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Note on the denominators of harmonic numbers
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Abstract

Let v, be the denominator of the n-th harmonic number H, = 1"+ % + -+ %
Recently, Shiu proved that there exist infinite positive integers,n satisfying each of
the following: (1) v, < vui1; (2) vie = vir1s (3) vy > 1 In this note, we extend
Shiu’s results and we prove the following: (1) for,any € > 0, there exist infinite n
such that v, < ev,41; (2) for any M > 0, there exist infinite n such that v, > Mv,.

(3) there exists infinite n such that v, = v,x1"= v,42.
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1 Introduction

For.any positive integer n, the n-th harmonic number H,, is defined as the following

1 1 1
Hn:1+—+—+"'+_:_’ (uﬂ’vn)zl’vn>0'
2 3 n

n

There is an old famous result about the n-th harmonic number. That is, Wolstenholme

[4] (see also [1, Theorem 115]) proved that u,_; can be divided by p* for any prime



p > 5. Itis easy to see that 2 { u, and 2 | v, for all n > 2, and so H, is not an integer
(see [3]).

In 2016, Shiu [2] proved that there exists infinitely many integers n satisfying each
of the following: (1) v, < V115 (2) Vi = Vir1s B) vy > Vi1

In this paper, we extend Shiu’s results.
Theorem 1. For any € > 0, there exist infinite positive integers n such that v, < €v,,.
Theorem 2. For any M > 0, there exist infinite positive integers n such that v,,3,> Mv,.
Theorem 3. The set of positive integers n with v,, = v,.1 = v, has deusity one.
Corollary 1. There are infinitely many integers n such that v, = Vi1 = Vyyo.

Finally, motivated by Corollary 1, we posed the following conjecture.

Conjecture 1. (i) There are infinitely many integers.nsuch that v, < v,.1 < Vy42.

(ii) There are infinitely many integers nsuch that v, > v,,1 > V,.2.

2 Lemmas

Lemma 1. (/1, Theorem 1157) If p is a prime greater than 3, then the numerator of the

fraction
1+1+1+ + !
2 3 p—-1

is divisible by‘p*.

For a positive integer n, we define v,(n) to be the integer k with p* | n and p**! 1 n.

For a rational number 7, we define v,(5) = v (a) — v, (D).
Lemma 2. For a prime p, if a, b are two rational numbers with v,(a) # v,(b), then
vy(a + b) = min{v,(a), v,(D)}.
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The proof of Lemma 2 is easy, we leave it to the reader.

Lemma 3. If p is an odd prime, then the numerator of the fraction

I 1 1
I+-+=-+---+
2 3 p—2

is not divisible by p.

Lemma 3 follows from Lemmas 1 and 2, and the equality

DL SIS !
2 3 p-2 v, p-1

immediately.

Lemma 4. (/5, Theorem 1.1]) The set of positive integers\wawith v, = v,.| has density

one.

3 Proofs

Proof of Theorem 1. Take a prme p.> = and let n = (p — 1)p* — 1. Then

Mg 1
Va 2 (p—Dpt-1
It is clear that
) (p-bpt-1 | ] |
oo gt (pk "o (- 2)pk)
P

By Lemma 3, we have

1+ ! +- 4 ! 1+1+1+ + ! ! k
2% JE— RS “ e —_— =V ju— ju— c e c— | = —K.
PA\pk = 2pk k P 2 3

Noting that



by Lemma 2, we have v, (‘v‘—) = —k.

Next, we consider v,,(’:"—*:). Since
n+

RS B 1 L]
Vit 2" (p-Dpf =1 (p-1)p*
1 P 1 l l p_l p_l 1 (P—I)Pk 1
R AR 2N e M
J= J=1 s=1 j=1 plyj

By Lemma 1, it follows that v,

—
<

= Zf;ll %) —(k — 2). Noting that

forany j=1,2,...,p— 1, we have

1 p-1 p-1
[F - (J—I)P"‘S) N4

J s=1

(p-p* 1
v,,[ > —,]2—(k—2).

It is clear that

=t i
Therefore, v,,(”"“) > —(k-2). Slnce oo 1) — = Z"“ it follows that v,,,; <5 2.(p-1)<
o< ev,.
P
This completes the proof of, Theorem 1. O

Proof of Theorem 2. Takeya prime p with p > M and letn = p—1. Then % = %+l =
“lSince (p,unp + va) = (p,va) = 1 and (v, tpp +v,) = Wy pp) = (v, p) = 1, it
follows that v,,; = pv, > Mv,.

This completes the proof of Theorem 2. O

Proof of Theorem 3. By Lemma 4, the set of positive integers n with v, = v, has
density one. Hence the set of positive integers n with v, < v, (or v, > v,,1) has

density zero. Noting that

n: vi=v <vad S{n vy < vigo}
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and

n:vi=ve > v} S Ve > viial,

we have

N1 V= Vg1 < Vg2 OV, = Vg1 > Vgo}

has density zero.
Therefore, the set of positive integers n with v, = v,,; = v,;, has density one.

This completes the proof of Theorem 3. O
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