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Abstract

In this article, we focus on Bernoulli percolation and mainly investigate
bounds of the probability of the connectivity of 0 to the distance n. At first, we
give a rough bound of the probability, and then refine our result by the high-
dimensional RSW theory, which gives a nontrivial bound for a short crossing
in Zd, as well as the renormalization method. We finish the last step of this
section by coupling. Next, we give a more refined bound in Z2 using the dual
graph. At last, we investigate the behaviors of some subgraphs of Z2.

Key words- Bernoulli percolation; high-dimensional RSW theory; renor-
malization; coupling; dual graph; subgraphs of Z2
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Intuitively, percolation is a simplistic probabilistic model for a porous material.
The inside of the material is described as a random maze where water can flow. The
question is to investigate which part of the material will be wet when immersed in water.
Mathematically, the material is modeled as a graph G with countable vertex-set V and
edge-set E (a subset of unordered pairs of elements in V).[5]

2 Basic Definitions
AgraphG is made of a setVwhose elements are calledvertices, and a setEwhose

elements are called edges. In the percolation model, V := Zd and E := {xy : x, y ∈
V, ‖x− y‖ = 1}. Also, when we limit the infinite graph, we have Λn := [−n, n]d for
every n ≥ 1. We use Λn(x) to represent the area of the shape Λn with the center point
x rather than 0.

For a subgraph G = (V,E) of Zd, the vertex boundary of G is defined by ∂G :=
{x ∈ V : ∃y ∈ Zd such that ‖x − y‖ = 1 and y /∈ V }, and the edge boundary is
defined by4G := {xy : x ∈ V, y /∈ V }

Apercolation configuration ω = (ω(e) : e ∈ E) onG = (V,E) is an element
of {(ω(e1), ..., ω(eE)) : ω(ei) ∈ {0, 1}}. When ω(e) = 1, we say that the edge e is
open. When ω(e) = 0, the edge e is closed.

A percolation model is given by a distribution on percolation configurations
on a graph. The simplest example of percolation model is Bernoulli percolation:
each edge is open with probability p, and closed with probability 1− p, independently
of the states of other edges.

We usually define Bernoulli percolation on the infinite lattice Zd. Therefore, we
consider the probability space (Ω,F ,Pp), where Ω is all the possible percolation
configurations on Zd. F is the σ−algebra generated by events depending on finitely
many edges, and Pp is the corresponding probability measure.

Define a path ζ from A to B as a chain of vertices ζ = (v1, v2, ..., vn) where
v1 = A, vn = B, ‖vi+1 − vi‖ = 1 and ω(vivi+1) = 1. Define the vertices and edges
of a path as V (ζ) = {v : ∃1 ≤ i ≤ n, v = vi} and E(ζ) = {vivi+1 : 1 ≤ i ≤ n− 1}

If there is a path from A to B, we say that A is connected with B, denoted by
A←→ B. Especially, when {V (ζ)} ⊆ S, we can denote it by A S←→ B. If A and B
are sets, A←→ B means that ∃a ∈ A, b ∈ B such that a←→ b.

A connected component of 0 is defined by C0 := {x ∈ V : x←→ 0}.
We denote probability of the event {0} ←→ ∂Λn as θn(p), where p is the pa-

rameter of Bernoulli random variables. Besides, we define θ(p) := Pp(0 ←→
∞) = lim

n→∞
θn(p). From definition, we can know that θ(0) = 0 and θ(1) = 1,

but the behavior of the function θ(p) is not apparent. We define the transition point
pc := inf{p ∈ [0, 1] : θ(p) > 0}. We call the situation where p = pc as the critical
phase, p < pc as the subcritical phase, and p > pc as the super critical phase.

A configuration ω is smaller than another configuration ω′ if and only if for any
e ∈ E, ω(e) ≤ ω′(e). An event A is increasing if and only if for any ω ∈ A, if

3
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A set IA ⊂ E is a witness of an eventA in a configuration ω if and only if ω ∈ A
and for any ω′ that satisfies ω′(e) = ω(e) where e ∈ I , then ω′ ∈ A. For two events A
and B, if there exist IA and IB such that IA∩ IB = ∅, we call the situation as disjoint
occurrence and denote it by A ◦ B.

When we say that there is a horizontal crossing in a rectangle like [0, a] × [0, b],
we mean that {0} × [0, b] ←→ {a} × [0, b]. And we denote the event by H(a, b). If
[0, a] × {0} ←→ [0, a] × {b}, we say that there is a vertical crossing and denote it by
V(a, b). More generally, we use H(S) and V(S) to denote the event of a horizontal or
vertical crossing in S.

A dual graph (Z2)∗ is obtained by translating the copy of the original graph Z2 by
the vector ( 1

2 ,
1
2 ). Every edge in the dual graph is open when its corresponding edge in

the original graph is closed. If the original configuration has a Bernoulli parameter p,
then the dual configuration has a Bernoulli parameter 1− p.

Define the function 1A : ω → {0, 1}, where A is an event, as

1A =

{
0 ω /∈ A
1 ω ∈ A

(1)

3 Notations
Below are some notations we will use.

4
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η k-independent percolation

An lattice animals with size n

C0 connected component of 0

Λn [−n, n]d

∂S vertex boundary of S

H(S) horizontal crossing in S

V(S) vertical crossing in S

V (ζ) vertex set of the path ζ

E(ζ) edge set of the path ζ

ϕ(p) correlation length function

ϕp(S) expectation of going out of S

ci(v) i− th value function for a n− tuple
Ci(va, vb) an event about va, vb in the i− th direction

Si(n, kn) short crossing in the i− th direction

Table 1: Notations Table

4 Tools

4.1 Harris-FKG Inequality
The Harris-FKG(Fortuin, Kasteleyn, Ginibre) inequality is used to bound the prob-

ability of the intersection of two events that aren’t independent.
For two increasing events A and B, we have:

Pp[A ∩ B] ≥ Pp[A]Pp[B] (2)

More generally, if f and g are two bounded increasing functions:

Ep[fg] ≥ Ep[f ]Ep[g] (3)

Notice that the FKG inequality implies that
For an increasing event A and a decreasing event B:

Pp[A ∩ B] ≤ Pp[A]Pp[B] (4)

5
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The BK(Berg Kesten) inequality generalizes the situation when two events A and
B depend on some deterministic sets of edges.
For two increasing events A and B depending on finitely many edges , we have:

Pp[A ◦ B] ≤ Pp[A]Pp[B] (5)

In this article, the BK inequality is typically used to illustrate

Pp[{0←→ A} ◦ {0←→ B}] ≤ Pp[0←→ ∂Λn]2 (6)

where A,B ∈ ∂Λn.

4.3 RSW theory
The RSW(Russo-Seymour-Welsh) theory applies to the cases when d = 2 and

p = pc. It gives a nontrivial bound for every rectangle crossing.
For two positive numbers α and β, we have:

c < Pp[H(αn, βn)] < 1− c (7)

where c > 0 and n is any positive integer.

4.4 Exponential decay in diameter
The theorem, first presented by Aizenman and Barsky and Menshikov, is used to

predict the behavior of θn(p) when p < pc.
Fix d ≥ 2. When p < pc, there exists c > 0 only depending on d such that:

θn(p) ≤ exp(−cn) (8)

where n is any positive integer.

5 θn(pc) ≥ c
nd−1

This lower bound was studied by Grimmitte [7] using the correlation length function
ϕ(p) (11). Here we give a slightly different treatment. and show that the continuity of
the function ϕ(p) implies the lower bound in this section.

Denote the point (1, 0, ..., 0) as e1 and (n, 0, ..., 0) as ne1. Wewant to first introduce
the Fekete lemma:

Lemma 1 Let {an} be a sequence of real numbers. If it satisfies ∀ m,n≥ 0, am+n ≤
am + an, then the limit of {ann } exists and lim

n→∞
{ann } = inf

n>0
{ann }.

6
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Pp[0←→ (m+ n)e1] ≥ Pp[0←→ me1]Pp[me1 ←→ (m+ n)e1]

≥ Pp[0←→ me1]Pp[0←→ ne1]
(9)

Therefore,

− logPp[0←→ (m+ n)e1] ≤ − logPp[0←→ me1]Pp[0←→ ne1]

≤ − logPp[0←→ me1]− logPp[0←→ ne1]
(10)

Let un be − logPp[0←→ ne1]. Then un satisfies um+n ≤ um + un. As a result,
the limit of {un

n } exists. We denote it by

ϕ(p) = lim
n→∞

{un
n
} (11)

Because ϕ(p) = lim
n→∞

{un

n } = inf
n>0
{un

n }, we have:

inf
n>0
{− logPp[0←→ ne1])

n
} = ϕ(p)

− logPp[0←→ ne1])

n
≥ ϕ(p)

Pp[0←→ ne1] ≤ exp(−nϕ(p))

(12)

Our goal is to show that

1

cnd−1
e−nϕ(p) ≤ θn(p) ≤ cnd−1e−nϕ(p) (13)

If the inequality holds, then when p > pc, ϕ(p) = 0. Consequently, we can use the
continuity of the function ϕ(p) to show ϕ(pc) = 0 and θn(pc) ≥ 1

cnd−1 .
For the upper bound θn(p) ≤ cnd−1e−nϕ(p), we can first define a point x on ∂Λ

such that Pp[0←→ x] = max
y∈∂Λ
{Pp[0←→ y]}.

Notice that from symmetry,

Pp[0←→ x]2 ≤ Pp[0←→ 2ne1]

Pp[0←→ x] ≤ Pp[0←→ 2ne1]
1
2

(14)

and
θn(p) = Pp[0←− ∂Λ] ≤ |∂Λ|Pp[0←− x]

≤ |∂Λ|Pp[0←→ 2ne1]
1
2

≤ |∂Λ|e−nϕ(p)

≤ cnd−1e−nϕ(p)

(15)

Here we use the fact that |∂Λ| ≤ cnd−1 for some constant c related to the dimension d.

Lemma 2

|∂Λ| ≤ 2d(2n+ 1)d−1 (16)

7
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Assume that x ∈ ∂Λ in a d-dimensional graph. Then one of the coordinates of x
should be n or −n. Arbitrarily set one coordinate (c1, c2, ..., cd) to be n or −n, and
we will have 2d initial choices. There is no further restriction on other coordinates, so
each of them can be ranged from −n to n, which indicates 2n + 1 choices. There are
totally d− 1 of them.

Therefore, each point x ∈ ∂Λ will belong to one of the point generated by the above
method. This implies that |∂Λ| ≤ 2d(2n+ 1)d−1.

We will then prove that

θn(p) ≥ 1

cnd−1
e−nϕ(p) (17)

Notice that
θm+n(p) ≤ θm(p)Pp[Λm ←→ Λm+n]

≤ |Λm|θm(p)Pp[x←→ Λm+n]

≤ |Λm|θm(p)θn(p)

≤ 2d(2m+ 1)d−1θm(p)θn(p)

≤ 2d3d−1md−1θm(p)θn(p)

(18)

Here Pp[x←→ Λm+n] = max
y∈Λm

{Pp[y ←→ Λm+n]}.
Then we want to apply the Fekete’s lemma again by constructing un such that

um+n ≤ um + un. As a result, we have:

2d6d−1(m+ n)d−1θm+n(p) ≤ 2d6d−1md−1θm(p)2d3d−1(m+ n)d−1θn(p) (19)

Let an = 2d6d−1nd−1θn(p), so we have:

am+n ≤ am2d3d−1(m+ n)d−1θn(p) (20)

Sincem and n are interchangeable, we can assume thatm ≤ n.

am+n ≤ am2d3d−1(m+ n)d−1θn(p)

≤ am2d3d−12d−1nd−1θn(p)

≤ aman

(21)

Therefore,
log am+n ≤ log am + log an (22)

which means that the limit of the sequence { log an
n } exists and lim

n→∞
{ log an

n } =

inf
n>0
{ log an

n }.

Suppose lim
n→∞

{ log an
n } = X , then:

inf
n>0

log 6d−1nd−1θn(p)

n
= X (23)

8
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6d−1nd−1

≥ c

nd−1
enX

(24)

Notice that
Pp[0←→ ne1] ≤ θn(p) ≤ cnd−1e−nϕ(p) (25)

and

lim
n→∞

log 6d−1nd−1Pp[0←→ ne1]

n
= lim
n→∞

log 6d−1nd−1 + logPp[0←→ ne1]

n

= lim
n→∞

logPp[0←→ ne1]

n

= −ϕ(p)
(26)

lim
n→∞

log 6d−1nd−1cnd−1e−nϕ(p)

n
= lim
n→∞

log 6d−1nd−1 + log cnd−1e−nϕ(p)

n

= lim
n→∞

log cnd−1e−nϕ(p)

n

= lim
n→∞

log e−nϕ(p)

n

= −ϕ(p)

(27)

According to the Squeeze Theorem, X = −ϕ(p).
Because ϕ(p) = inf

n>0

− log Pp[0←→ne1]
n = sup

n>0

− log cnd−1θn(p)
n , ϕ(p) is continuous

according to the property of semi-continuity.
If ϕ(p) > 0 for some p > pc, we will have:

θ(p) = lim
n→∞

θn(p) ≤ lim
n→∞

cnd−1e−nϕ(p) = 0 (28)

From the definition of pc, we know that this is a contradiction.
Therefore, when p > pc, ϕ(p) = 0. Since ϕ(p) is continuous, ϕ(pc) = 0 and

θn(pc) ≥
1

c1nd−1
e−nϕ(pc) ≥ c2

nd−1
(29)

6 θn(pc) ≥ c

n
d−1
2

We first start from the case where d = 2.
According to the RSW theorem, Pp[H(2n, 2n)] > c for some positive real number

c. Then there exists some x ∈ {n} × [0, 2n] such that Ppc [horizontal crossing passes

9
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2n+1 . Define A as the event {x←→ {0} × [0, 2n]}, and B as the event
{x←→ {2n} × [0, 2n]}. Then, we have:

Ppc [A ◦ B] >
1

2n+ 1
Pp[H(2n, 2n)] >

c

n
(30)

According to the BK inequality,

Ppc [A]Ppc [B] ≥ Ppc [A ◦ B] (31)

Since A,B ∈ {x←→ ∂Λn},

Ppc [x←→ ∂Λn]2 ≥ Ppc [A]Ppc [B] >
c

n
(32)

According to the invariance property of the proof, ∀x ∈ Z2, we have:

θn(pc) = Ppc [x←→ ∂Λn] ≥ c√
n

(33)

When d > 2, we can apply similar reasoning for x ∈ {0} × [−n, n]d−1. Define
Si(n, kn) as the event [0, kn]i−1×{0}× [0, kn]d−i ←→ [0, kn]i−1×{n}× [0, kn]d−i.
When Si(n, kn) happens, we say that there is a short crossing in the box [0, kn]i−1 ×
[0, n]× [0, kn]d−i.

Notice that if we prove the inequality Si(n, kn) > c always holds for some i, k, c
when p = pc, we can conclude that θpc(n) ≥ c

n
d−1
2

by constructing a box [−n, n] ×
[−kn, kn]d−1.

We will then prove by contradiction that S1(n, 2n) > c is always true when p = pc.
In order to prove it, we need to know how to describe a path in detail. For a

d-tuple v = (v1, ..., vd), we define ci(v) = vi. For a path ζ in dimension d, we
define lmin(ζ) = (a1, ..., ad) and lmax(ζ) = (b1, ..., bn) where ai = min

v∈V (ζ)
{ci(v)}

and bi = max
v∈V (ζ)

{ci(v)}.

We will introduce the Crossing Lemma which describes how we can have a short
crossing:

Lemma 3 For a box B = [0, 2n]i−1× [0, n]× [0, 2n]d−i, the event Si(n, 2n) happens

if and only if there exists a path ζ such that ci(lmin(ζ)) ≤ 0, ci(lmax(ζ)) ≥ n, and

cj(lmin(ζ)), cj(lmax(ζ)) ∈ [0, 2n] for any j 6= i,

Proof:
From the definition, we know that if v1 ←→ v2 where ci(v1) = 0, ci(v2) = n,

and cj(v1), cj(v2) ∈ [0, 2n] for j 6= i, the event Si(n, 2n) happens. Since the path ζ
satisfies the condition cj(lmin(ζ)), cj(lmax(ζ)) ∈ [0, 2n] for any j 6= i, for any vertex
v ∈ V (ζ), cj(v) ∈ [0, 2n] where j 6= i. Therefore, if we prove that ∃v1, v2 ∈ V (ζ)
such that v1 ←→ v2, ci(v1) = 0, ci(v2) = n, we will complete the proof for the
Crossing Lemma. Obviously, because ‖vi+1 − vi‖ = 1 for any path ζ, the function

fi(x) =

{
ci(vx) x ∈ Z, 1 ≤ x ≤ |V (ζ)|
ci(vbxc) + {x}(ci(vbxc+1)− ci(vbxc)) x /∈ Z, 1 ≤ x ≤ |V (ζ)|

(34)

10
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Assume that va, vb ∈ V (ζ) where b > a, ci(va) ≤ 0, and ci(vb) ≥ n. According
to the Intermediate Value Theorem, there exists a ≤ d1, d2 ≤ b such that f(d1) = 0
and f(d2) = n. Since 0 and n are integers, d1, d2 are integers. Therefore, this ensures
that ∃vd1 , vd2 and vd1 ←→ vd2 , ci(vd1) = 0, ci(vd2) = n. So far we have completed
the proof for the lemma.

Using this lemma, we will show that

Pp[S1(n, 4n)] ≤ c(d)Pp[S1(n, 2n)] (35)

where n is any integer and c(d) is an integer only depending on the dimension d.
Especially, we give an estimation for c(d) that c(d) = 3d−2(4d− 1).

When the event S1(n, 4n) happens, there is a path ζ = (v1, ..., vk) such that
c1(v1) = 0, c1(vk) = n, and ∀v ∈ ζ and i > 1, ci(v) ∈ [0, 4n].

Our goal is to show that the path will always result in a short crossing in one of the
following boxes: [0, n] × ([0, 2n]d−1 + u), [0, 2n] × ([0, 2n]f + h) × ([0, n] + w) ×
([0, 2n]d−f−2 + l) where u ∈ {0, n, 2n}d−1, 0 ≤ f ≤ d − 2, h ∈ {0, n, 2n}f , w ∈
{0, n, 2n, 3n}, l ∈ {0, n, 2n}d−f−2. The number of these boxes is just 3d−2(4d− 1).

If the path ζ doesn’t result in any short crossing in those boxes, then for any subpath
ζ ′ = (va, va+1, ..., vb)where 1 ≤ a ≤ b ≤ k, ζ ′ also doesn’t result in any short crossing
in those boxes.

Since ζ doesn’t result in any short crossing in [0, n]× ([0, 2n]d−1 + u), there exists
an integer i1 6= 1 such that ci1(lmin(ζ)) and ci1(lmax(ζ)) don’t belong to one of [0, 2n],
[n, 3n], [2n, 4n] simultaneously. Denote the event {ci1(va) and ci1(vb) don’t belong to
one of [0, 2n], [n, 3n], [2n, 4n]} as Ci1(va, vb)

Therefore, there exist va, vb ∈ V (ζ)where b > a such thatCi1(va, vb) happens. We
cut a sub-path ζ ′ = (va, ..., vb) from the original path. Notice that ζ ′ doesn’t result in any
short crossing in [0, 2n]×([0, 2n]i1−1+h)×([0, n]+w)×([0, 2n]d−i1−2+l). According
to the Crossing Lemma, there must exist an integer i2 6= i1 such that ci2(lmin(ζ

′
)) and

ci2(lmax(ζ
′
)) don’t belong to one of [0, 2n], [n, 3n], [2n, 4n] simultaneously, which

ensures that Ci2(vc, vd) happens where a ≤ c < d ≤ b.
So far, we have roughly established an algorithm to cut a sub-path. Notice that this

algorithm can repeat itself for infinitely many steps, while the number of elements in
any path is finite. If we prove that the algorithm cuts at least one element for every step,
the path needs to have infinitely many elements, which is a contradiction. Therefore,
we will be able to say that if S1(n, 4n) happens, there will be a short crossing at least
in one of 3d−2(4d− 1) boxes, whose probability is equivalent to S1(n, 2n).

In the next part, we will show that for any sub-path ζ = (va, ..., vb), we can easily
find a vertex va′ ∈ V (ζ) different from va such that the event Ci(va′ , vb) happens.

Assume that we have already chosen a sub-path ζ = (va, ..., vb) satisfying that
Ci(va, vb) happens. If there exist vc different from va and vb which ensures Cj(vc, vd)
for some j, d, we can cut a sub-path ζ ′ = (vc, ..., vd) where |V (ζ ′)| < |V (ζ)|. If such
vc doesn’t exist, the event Cj(va, vb) will happen for some j 6= i. However, since
‖va+1 − va‖ = 1, one of Ci(va+1, vb) and Cj(va+1, vb) will happen, which indicates
that such vc exists and vc = va+1.

Therefore, for every step of the algorithm, it will cut at least one element from ζ, so
the algorithm will cut infinitely many elements, which is a contradiction.

11
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one of 3d−2(4d − 1) boxes. Denote each event by Bi where 1 ≤ i ≤ 3d−2(4d − 1).
Noticing that Ppc [Bi] = Ppc [S1(n, 2n)], we have

Ppc [S1(n, 4n)] ≤ Ppc [

3d−2(4d−1)⋃
i=1

Bi]

≤ 3d−2(4d− 1)Ppc [S1(n, 2n)]

≤ c(d)Ppc [S1(n, 2n)]

(36)

By using the BK Inequality, we get that

Ppc [S1(2n, 4n)] ≤ Ppc [S1(n, 4n)]2

≤ c(d)2Ppc [S1(n, 2n)]2
(37)

If Ppc [S1(n, 2n)] < 1
c(d)2 , this result will imply that

Ppc [S1(n, 2n)] ≤ exp (−cn) (38)

However, it will lead to this result

θpc(n) ≤ c1nd−1Ppc [{0} ←→ x]

≤ c1nd−1Ppc [{0} ←→ {n} × [0, 2n]d−1]

≤ c1nd−1Ppc [S1(n, 2n)]

≤ c1nd−1 exp (−c2n)

≤ exp (−c3n lnn)

(39)

This means that θpc(n) is decaying exponentially fast, which is impossible because
Epc [|C0|] = +∞(proven later in the section (8)) and if it happens

Epc [|C0|] =

∞∑
n=1

∑
x∈∂Λn

Ppc [0←→ x]

≤
∞∑
n=1

∑
x∈∂Λn

Ppc [0←→ ∂Λn]

≤
∞∑
n=1

2d(2n+ 1)d−1 exp (−c3n lnn)

< +∞

(40)

Therefore, we have completed the proof that

Ppc [S1(n, 2n)] ≥ 1

c(d)2
> c (41)

By using this technique, we can extend our proof to any dimension. So, the
inequality

θpc(n) ≥ c

n
d−1
2

(42)

always holds for d ≥ 2.
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We will use a method called renormalization for the proof of S1(n, 2n) > c.
The spirits of the renormalization is to amplify the effect of assumptions like

∀ε > 0,S1(n, 2n) < ε by constructing a so called k-independent percolation on the
original graph. Typically, the situation in the k-independent percolation will contradict
some properties of the original graph, which leads to the disproof of the assumption
chosen.

Assume that ∃n0 such that Ppc [S1(n0, 2n0)] < ε,∀ε > 0. If we have

Ppc [∂Λn0
←→ ∂Λ3n0

] ≤ 2dPpc [S1(n0, 3n0)] (43)

then

Ppc [∂Λn0 ←→ ∂Λ3n0 ] ≤ 2dPpc [S1(n0, 3n0)]

≤ 2dPpc [S1(n0, 4n0)]

≤ 2dc(d)Ppc [S1(n0, 2n0)]

< ε

(44)

The third inequality is implied by the equation (35).
We will prove (43) by showing that the event {∂Λn0

←→ ∂Λ3n0
} will result in

a short crossing in one of the following boxes: [−3n0, 3n0]i × ([−3n0, n0] + w) ×
[−3n0, 3n0]d−i−1 where 0 ≤ i ≤ n0 − 1 and w ∈ {0, 4n0}.

When {∂Λn0 ←→ ∂Λ3n0} happens, we know there will be two points x, y such
that x ←→ y, |ci1(x)| = n0, |ci2(y)| = 3n0 for some i1, i2, and ∀j ≥ 1, |cj(x)| ≤
n0, |cj(y)| ≤ 3n0. According to the Crossing Lemma, we will have a short crossing in
[−3n0, 3n0]i2−1 × [−3n0,−n0]× [−3n0, 3n0]d−i2 or [−3n0, 3n0]i2−1 × [n0, 3n0]×
[−3n0, 3n0]d−i2 . So, Ppc [∂Λn0

←→ ∂Λ3n0
] ≤ 2dPpc [S1(n0, 3n0)].

Now, we construct a new site percolation η on the original graph Zd where η(x) =
1∂Λn0 (x)←→∂Λ3n0 (x) to determine whether the vertex x is open or closed. Notice that
if y ∈ Λ6n0

(x) \ ∂Λ6n0
(x), η(x) and η(y) aren’t independent. Therefore, we call this

site percolation as 6n0-percolation. If we only consider vertices that are independent
to each other, the 6n0-percolation is like a Bernoulli percolation with the Bernoulli
parameter p′ = Ppc [∂Λn0

(x)←→ ∂Λ3n0
(x)].

A path ζ in η fromA toB is a chain of vertices (v1, ..., vk) where v1 = A, v2 = B,
‖vi+1 − vi‖ = 1, and η(vj) = 1 where 1 ≤ i ≤ k − 1 and 1 ≤ j ≤ k.

Define the lattice animals with size n as An = {all the possible C0 : |C0| = n}.
For a specific element C ∈ An, since the η percolation is 6n0-independent, there

will be at least n
36n2

0
independent vertices in C, so

P[C is a connected inside] ≤ P[
n

36n2
0

independent vertices are open]

≤ p′
n

36n2
0

(45)
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∑
C∈An

P[C is a connected inside]

≤ |An|p′
n

36n2
0

≤ 16dnp′
n

36n2
0

≤ exp(−cn)

(46)

Here we use the fact that p′ < ( 1
e16d )36n2

0 and |An| ≤ 16dn.
Notice that

Ppc [0←→ ∂Λn] ≤ P[|C0| ≥ n− 3n0]

≤ exp(−cn)
(47)

We have θpc(n) decaying exponentially fast, which we have known is impossible.
Therefore, the assumption ∃n0 such that Ppc [S1(n0, 2n0)] < ε,∀ε > 0 is false, so

Ppc [S1(n, 2n)] > c for some c. As a result, we have shown that θpc(n) ≥ c

n
d−1
2

by the
renormalization method.

8 Epc
[|C0|] = +∞

We will give two different proofs to this theorem. In the second proof, we will give
an inverse proportional function to estimate |C0| when p < pc.
Proof 1:

We start with the fuction ϕp(S) = Ep[
∑

xy∈4S
1
{xy is open,0 S←→x}

]. It has been shown

before [6] that ∀S, ϕpc(S) ≥ 1. Therefore,

Epc [|C0|] =

∞∑
i=0

∑
x∈∂Λi

Ppc [0←→ x]

≥
∞∑
i=0

ϕp(Λi)

≥
∞∑
i=0

1

(48)

which indicates that Epc [|C0|] = +∞.
Notice that because ∀S, ϕpc(S) ≥ 1, we have ∀n ≥ 1, ϕpc(Λn) ≥ 1. This also

implies the result θpc(n) ≥ c
nd−1 since

cnd−1Ppc [0←→ ∂Λn] ≥ cnd−1Ppc [0←→ x]

≥ Ep[
∑

xy∈4Λn

1
{xy is open,0 S←→x}

]

≥ 1

(49)
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y∈∂Λn

{Ppc [0←→ y]}.
Proof 2:

Assume that Ep[|C0|] = t(p). We will prove that t(p) ≥ 1
4d(pc−p) for p < pc and

t(pc) = +∞.
We use the technique of coupling in this part. Suppose that ε < 1

4dt(p) , U is
an i.i.d. uniform distribution, and ω, ω′ are two percolation configurations such that
ω(e) = 1U(e)≤p and ω′(e) = 1U(e)≤p+ε. Then, each edge e has the probability ε to be
open in ω′ but closed in ω.

Assume that there is a path ζ = (v1, ..., vk) connecting 0 and x, and n edges of the
path are open inω′ but closed inω. Define {e(ζ)} = {e ∈ E(ζ) : ω(e) = 0, ω′(e) = 1}
and Dn = {∃ζ : |{e(ζ)}| = n, 0

V (ζ)←→ x}. Given ei = vjvj+1 ∈ {e(ζ)}, we define
e+
i = vj and e−i = vj+1

Therefore, for p that satisfies t(p) < +∞, we have

Pp+ε[0←→ x] ≤
∞∑
n=0

∑
ei∈{e(ζ)}

Pp[Dn]

≤
∞∑
n=0

∑
ei∈{e(ζ)}

Pp[0↔ e−1 ]...Pp[e+
n−1 ↔ e−n ]Pp[e+

n ↔ x]εn
(50)

t(p+ ε) = Ep+ε[|C0|]

=
∑
x∈Zd

Pp+ε[0←→ x]

≤
∑
x∈Zd

∞∑
n=0

∑
ei∈{e(ζ)}

Pp[0↔ e−1 ]...Pp[e+
n−1 ↔ e−n ]Pp[e+

n ↔ x]εn

≤
∞∑
n=0

∑
ei∈{e(ζ)}

Pp[0↔ e−1 ]...Pp[e+
n−1 ↔ e−n ]t(p)εn

≤
∞∑
n=0

(2dt(p))nt(p)εn

<

∞∑
n=0

t(p)

2n

< +∞

(51)

Notice that ∀x ∈ Zd,
∑
y∈Zd

Pp[x ←→ y] = t(p) and there are 2d choices for each e+
i

when e−i is fixed.
Now, if t(pc) < +∞, we will have t(pc + ε) < +∞ for some ε > 0. This is a

contradiction because there exists an infinite cluster almost surely when p > pc, which
means that Ep[|C0|] = +∞ for p > pc.
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4d(pc−p) because if t(p) <
1

4d(pc−p) , we can choose
ε = (pc − p) < 1

4dt(p) such that t(pc) = t(p + ε) < +∞, leading to a contradiction.
This estimation is useful when p and pc are close.

9 θn(pc) ≥ c

n
1
3
,d = 2

Define Γ as the lowest left-right crossing in [−2n, 2n]2. Our goal is to show that
Ppc [Γ ∈ [−2n, 2n]× [−n, n]] > c. It has been shown that when d = 2, pc = 1

2 .[8]
According to the graph below, we define A = [−2n, 2n] × [−n, n], A+ =

[−2n, 2n] × [0, n], A− = [−2n − 1
2 , 2n + 1

2 ] × [−n + 1
2 ,−

1
2 ]. Define H∗(S) as

the event of having a horizontal crossing in the dual graph, and V∗(S) as the event of
having a vertical crossing in the dual graph. As a result,

Ppc [Γ ∈ A] ≥ Ppc [H(A+) ∩H∗(A−) ∩ V∗([−2n− 1

2
, 2n+

1

2
]× [−2n− 1

2
,−1

2
])]

≥ Ppc [H(A+)]Ppc [H∗(A−) ∩ V∗([−2n− 1

2
, 2n+

1

2
]× [−2n− 1

2
,−1

2
])]

≥ Ppc [H(A+)]Ppc [H∗(A−)]Ppc [V∗([−2n− 1

2
, 2n+

1

2
]× [−2n− 1

2
,−1

2
])]

≥ c
(52)

Figure 1: Lowest Crossing
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such that x∗ = x+ (0,− 1
2 ) and Ppc [x ∈ {{0} × [−n, n]} ∩ V (ζ)] ≥ c

2n+1 .
Therefore,

θpc(n)
3 ≥ Ppc [x↔ {−2n} × [−n, n]]Ppc [x↔ {2n} × [−n, n]]Ppc [x

∗ ↔ [−2n+
1

2
, 2n− 1

2
]× {−2n− 1

2
}]

≥ Ppc [x↔ {−2n} × [−n, n] ◦ x↔ {2n} × [−n, n]]Ppc [x
∗ ↔ [−2n+

1

2
, 2n− 1

2
]× {−2n− 1

2
}]

≥ Ppc [x↔ {−2n} × [−n, n] ◦ x↔ {2n} × [−n, n] ∩ x∗ ↔ [−2n+
1

2
, 2n− 1

2
]× {−2n− 1

2
}]

≥ Ppc [x ∈ {{0} × [−n, n]} ∩ V (ζ)]

≥ c

2n+ 1
(53)

The third inequality comes from the FKG inequality applied to one increasing event
and one decreasing event.

Figure 2: Dual Point

As a result,
θn(pc) ≥

c

n
1
3

(54)

By using similar technique, we are able to show in further that

Ppc [Γ ∈ A] > c (55)
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0 < α, β < 2

10 Percolation on the subgraphs of Z2

In this section, we will talk about the percolation limited on some subgraphs of Z2.
We start from the example of the graph H1 = {(x, y) : 0 ≤ y ≤ x+ 1}.
One natural question is that what is pc(H1), the critical phase of the graph H1.

Define θH1
n (p) = Pp[0

H1←→ Λn]. Since {0 H1←→ Λn} ∈ {0←→ Λn}, θH1
n (p) ≤ θn(p),

which implies that pc(H1) ≥ 1
2 .

Actually,
pc(H1) =

1

2
(56)

We will prove the claim by contradiction.
Proof:

Assume pc(H1) = 1
2 + ε where ε > 0. Consider the dual graph (Z2)∗ whose

Bernoulli parameter is 1
2 − ε, indicating a subcritical percolation. Define two boxes

B(a, b) = {(x, y) : a ≤ x ≤ b, 0 ≤ y ≤ x + 1}, B∗(a, b) = {(x, y) : a + 1
2 ≤ x ≤

b− 1
2 ,−

1
2 ≤ y ≤ x+ 3

2}, and the eventKn in (Z2)∗ asKn = {(n+ 1
2 , n+ 3

2 )
B∗(n,+∞)←→

{(x, y) : y = − 1
2}} where B(a, b) consists of vertices with integer coordinate and

B∗(a, b) consists of vertices in the corresponding dual graph (Z2)∗.
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Figure 3: Boxes

Notice that Kn ∈ {(n+ 1
2 , n+ 3

2 )←→ ∂Λn((n+ 1
2 , n+ 3

2 ))}. Therefore,

Ppc−ε[Kn] ≤ Ppc−ε[0←→ ∂Λn]

≤ exp(−cn)
(57)

which means that
∞∑
n=0

Ppc−ε[Kn] < +∞. According to the Borel–Cantelli lemma,

Ppc−ε[Kn only happens for finitely many times] = 1.
If Kn only happens for finitely many times, there exists an integer N for each

specific configuration such that ∀n ≥ N,1Kn = 0. Therefore, we can claim that there
exists an integer N large enough such that

Ppc−ε[{∀n ≥ N,1Kn
= 0}] > 1− ε (58)

for any ε > 0. Define LN = {
∞⋃
i=N

Ki}. If LN doesn’t happen, the event {∀n ≥
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Ppc−ε[{∀n ≥ N,1Kn = 0}] = 1− Ppc−ε[LN ]

≥ 1−
∞∑
i=N

Ppc−ε[Ki]

> 1− ε

(59)

Notice that the event {∀n ≥ N,1Kn
= 0} is equivalent to the event {∀K ≥ N,

there is no vertical crossing in B∗(N,K)}. Since B∗(N,K) exists in the dual graph,
the event is also equivalent to {∀K ≥ N, there is a horizontal crossing in B(N,K)}.
Consequently,

Ppc+ε[0
H1←→ ∂ΛK ] ≥ Ppc+ε[0

H1←→ x(N)]Ppc−ε[LN ]

> c1(1− ε)
> c2

(60)

where x(N) ∈ ∂ΛN is a point of the horizontal crossing in B(N,K).
Therefore, there exists a uniform lower bound c > 0 such that θH1

n ( 1
2 + ε) > c for

all n, which means that ∀p > 1
2 , θ

H1(p) > 0. Consequently, we can conclude that
pc(H1) = 1

2 .
This method can also be applied to any subgraph H ′ = {(x, y) : 0 ≤ y ≤ f(x)}.

As long as
∞∑
n=0

exp(−cf(x)) converges, pc(H ′) = 1
2 . For example, given a subgraph

H ′ = {(x, y) : 0 ≤ y ≤ log(x+ 1)2}, since the sequence

∞∑
n=0

exp(−c log(n+ 1)2) =

∞∑
n=0

(n+ 1)−c log(n+1)

=

exp( 2
c
)−1∑

n=0

(n+ 1)−c log(n+1) +

∞∑
n=exp( 2

c
)

(n+ 1)−c log(n+1)

≤
exp( 2

c
)−1∑

n=0

(n+ 1)−c log(n+1) +

∞∑
n=exp( 2

c
)

(n+ 1)−2

< +∞
(61)

converges, pc(H ′) = 1
2 .

The other problem we want to discuss is the bound of θHn (pc) for some subgraphs,
as we have done for Zd.

We again start from the subgraph H1 = {(x, y) : 0 ≤ y ≤ x + 1}. We will show
that

θH1
n (pc) ≥

1

nc
(62)

Proof:
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crossing in each box, the event {0 H1←→ Λn} will happen.

Figure 4: Exponentially Increasing

According to the graph,

θH1
n (pc) ≥pPp[

dlog2(n)e⋃
i=1

H([2i−1 − 1, 2i−13− 1]× [0, 2i−1])∪

dlog2(n)e−1⋃
i=1

V([2i − 1, 2i−13− 1]× [0, 2i])]

(63)

Notice that all those boxes are in the shape [0, 2n0] × [0, n0], so they have a uniform
lower bound c0 > 0. And then

θH1
n (pc) ≥ pc2dlog2(n)e−1

0

≥ pe−c1 log(n)

≥ 1

nc

(64)

Next, we will investigate on a series of subgraphs:

Ha = {(x, y) : 0 ≤ y ≤ x 1
a + 1} (65)

The simplest example is the subgraphH2 = {(x, y) : 0 ≤ y ≤ x 1
2 + 1}. Our claim

is that
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n (pc) ≥ exp(−c
√
n) (66)

Our inspiration comes from the previous proof which applies the use of exponentially
increasing boxes.

We consider the integer values of f(x) = x
1
2 + 1 and make a table:

Table 2: integer values

f(x) 2 3 4 ... n ...

x 1 4 9 ... (n− 1)2 ...

We will show that if there 2n− 1 boxes of two shapes with a crossing in each box,
the event {0 H2←→ ∂Λ(n−1)2} will happen.

Figure 5: Arithmetically Increasing

According to the graph,

θH2

(n−1)2(pc) ≥pPp[
n⋃
i=1

H([(i− 1)2, (i− 1)2 + 3i]× [0, i])∪

n−1⋃
i=1

V([(i2, i2 + i+ 1]× [0, i+ 1])]

(67)

All 2n − 1 boxes are either the shape [0, n0] × [0, n0] or [0, n0] × [0, 3n0], so,
according to the RSW theory, the probability of their crossing has a lower bound
c0, c1 > 0. So

θH2
n (pc) ≥ θH2

(d
√
ne)2(pc)

≥ pcd
√
ne+1

0 c
d
√
ne

1

≥ exp(−c
√
n)

(68)

We can extend this technique easily toHa based on the fact thatna−(n−1)a = f(n)
where the degree of f(n) is a−1. We can plot c(a−1) boxes between na and (n−1)a
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θHa
n (pc) ≥ exp(−cn

a−1
a ) (69)

for each subgraph Ha.
The conclusion is intuitive, as one can find out that as a goes to the infinity,Ha will

just be a vertical line, which indicates that θHn (pc) ≈ pnc ≥ exp(−cn).

Remark 1 In fact, using the Lemma 6.1 in the article [3] given by Cerf, for any

subgraph H = {(x, y) : 0 ≤ y ≤ f(x) + 1} where f(x) is plain enough, we can infer

that
θHn (pc) ≥ (

c

f(n)
)

n
f(n) (70)

but this lower bound is not as precise as the one we propose for subgraphs like Ha.
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