
20
21

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

A Study of Error Correcting Code using Impartial

Games

Author: Yifu Zhang1

Mentor: Prof. Noah Aydin2

Abstract

Lexicographic codes (abbreviated as lexicode) are defined as greed-

ily generated codes with fixed minimal distance. Surprisingly, de-

spite simple construction, such codes often have strong bounds.

Many of the known optimal codes are lexicographic, such as the well-

known binary Hamming codes, binary Golay code, etc. This paper

will study lexicographic codes by looking at the Sprague-Grundy

analysis of the game Mock Turtle, which generates the extended

Hamming code as well as its shortened version. This paper aims

to shed light on the generation of lexicode with specified minimal

distance d by first looking at the special case of Mock Turtle and ex-

tended Hamming code, which can then be generalized to find other

families of lexicographic code.

Keywords: error-correcting code, lexicographic code, impartial

game

1From Keystone Academy, Beijing, China
2From Kenyon College, Ohio, USA

20
21

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

Contents

1 Introduction 2

2 Generalization of Mock Turtle 3

3 Construction of Lexicodes Using Mock Turtle 6

3.1 Parity Check Matrix of Lexicode 6

3.2 Generalization to minimal distances 5 and 6 9

4 Conclusion and Future Work 10

5 Acknowledgment 10

Appendices 12

A Code for G-value Generation 12

B Dimension of n, k, 5 Lexicode 13

1

20
21

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

1 Introduction

One of the pioneering research on the subject of lexicographic code is by

Conway and Sloane[1], who analyzed this subject using Sprague-Grundy theory

of impartial games, most notably the Grundy’s game . Grundy’s game is defined

as an impartial heap game under normal play rules, where a legal move is to

split any heap into strictly different sizes. To study this game, we will first

review the theory of impartial games. One of the defining texts of the subject

is [3] by Berlekamp, Conway and Guy, while in this paper the author found

[2] very helpful and studied combinatorial game theory using this text. The

Sprague-Grundy theory analyzes impartial games by assigning G-values to each

game positions, which is stated below[1] [2] :

1. The zero game has G-value 0.

2. G(P) = mex{G(Q), G(R)...}, where Q,R, ... are all the game positions

that can be obtained from P using a single move. 3

3. A player win by consistently move to positions with G-value 0.

4. The G-value of a general position P1 + P2 + P3... is
∑

i=1 G(Pi), where

addition is bit-wise addition(also known as nim addition or exclusive-or),

which will be denoted as ⊕

By analyzing Grundy’s game using the above S-G theory, Conway and Sloane

deduced that the codewords in lexicodes corresponds to winning positions in

Grundy’s game. However, a complete S-G analysis of Grundy’s game has been

an open problem, In particular, the periodicity of G-value of the atomic positions

remains to be proven, which hinders the development of lexicodes

Later, Brualdi and Pless [4] provided a different approach to generate lex-

icographic code by assigning g-value (similar but distinct from the previous

G-value) to each vector of length n over GF (2), and the lexicographic code

would constitute of those with G-value 0. Trachtenberg, on the other hand,

developed an iterative algorithms, namely the B-construction, that constructs

generator matrices of lexicographic codes with desired minimal distance and

also have low trellis decoding complexity, which made it helpful for very large

size integration based decoding.[8] He also suggested that the lexicodes can be

3mex{S} is the minimal excludant operation, which finds the minimum non-negative inte-
ger that is not in S. e.g. mex{1, 2, 3} = 0

2

20
21

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

view as heuristically ”approximation” of optimal codes, because they are ”usu-

ally within one of the optimal minimal distance” [8]. The linearity of lexicodes

is also widely known due to works of several different authors, including [1] and

[4].

The game Mock Turtle, which turns out to be highly relevant in the study

of lexicode, is first discussed in [3], where a complete Nim analysis is presented.

The game Mock Turtle is a coin turning game under normal play. A position

in the game is denoted with a binary string, where 1 corresponds to head and

0 correspond tail. A move in the game is to flip a coin from head to tail, and

then flip up to 2 coins (or no coins) on the right of the flipped coin either from

head to tail, or tail to head. The lexicodes, which we will shortly discuss about,

is the Extended Hamming codes.

It should also be noted that lexicodes are not restricted to be binary. In

fact, it has been proven that for base 2a, unrestricted lexicodes are closed under

bit-wise addition, and for base 23
a

, unrestricted lexicodes are closed under nim-

multiplication[1]. However, for the interest of this paper, we will restrict our

analysis to binary lexicodes.

In this paper, we aim to generalize the game Mock Turtle to any minimal

distance d, which will then be used to generate the parity-check matrix of lex-

icographic code over GF (2) of any minimal distance, provided the analysis of

Mock Turtle with such minimal distance is complete.

2 Generalization of Mock Turtle

In this section, we will analyze Mock Turtle using Sprague-Grundy theory.

We begin by generalizing the definition of Mock Turtle:

Definition 2.1. Mock Turtle for distance d > 2 and length n is a n coin turning

game, with head denoted as 1 and tail as 0. A legal move is to flip one coin from

head to tail and flipping less than d− 1 coins to the right of that coin. In other

words, he may flip at most d− 1 coins provided the leftmost flip is from head to

tail. The last player who has no legal moves loses. To denote such a game, we

use a binary vector anan−1...a0, where an = 1 or 0 denotes the position of nth

coin. The unit vectors(atomic positions) are denoted ı̂k, and ı̂0 = 00...01. 4

4Due to the nature of this subject, we will use binary vectors and position interchangeably
throughout the paper

3

20
21

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

For example, at position 011000 for Mock Turtle of distance 4, the player

can move to 001000 by only turning one coin from head(1) to tail(0), or move to

001100 by turning the leftmost head to tail, and then flip the 3rd coin counting

from right from tail to a head,

Mock Turtle of minimal distance 4 and 3(called Turning Turtle) has been

analyzed thoroughly by Berlekamp, Conway and Guy. Their results is presented

as the following theorem:

Theorem 2.1. [3, p.463] For Mock Turtle of minimal distance 3, G(̂ık) = k+1.

For Mock Turtle of minimal distance 4, G(̂ık) = k′, where k′ is obtained by

expressing k in binary, then add an overall parity check digit on the right so

that the Hamming weight5 of the string is odd.

proof. We will only look at the d = 3 (Turning Turtle) case for simplicity.

For the d = 4 case, see [3, p.464].

In the Turning Turtle case: by strong induction: base case: G(̂ı0) = 1,

G(̂ı1) = 2. Suppose for all 0 ≤ j ≤ k, G(̂ıj) = j + 1. For ı̂k+1, it can reach any

ı̂j within one move. Any general position P = PkPk−1...P1, where Pj is either

0 or 1 has G-value P0G(̂ı0)⊕ ...⊕PkG(̂ıj) = 1×P0 ⊕ ...⊕Pk(k + 1) ≤ k + 1 by

definition of bit-wise addition. Hence, G(̂ık+1) = mex 0, 1, ...k + 1 = k + 2

Q.E.D

The following lemma is required to generate G-value for Mock Turtle of

minimal distance d.

Lemma 2.1. For any position P in Mock Turtle of minimal distance d, it can

reach another position Q within one legal move if and only if:

1. wt(P + Q) ≤ d− 16 and

2. The binary number P is greater than the binary number Q.

proof. If Q can be obtained in a legal move from P , then P > Q because

the leftmost coin must be flipped from 1 to 0. In addition, wt(P + Q) ≤ d− 1

because only d− 1 coins can be flipped.

If for some Q and P there is wt(P + Q) ≤ d − 1, and P > Q, then Q can

be obtained in a legal move from P . This follows directly from the definition of

Mock Turtle.
5Hamming weight of a binary string is the number of 1s in the string. e.g 0011 has weight

2.
6wt(P + Q) is the Hamming distance between P and Q, i.e. how many digits do P and Q

differs.

4

20
21

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

Q.E.D

Lemma 2.2. For Mock Turtle of distance d, G(̂ık) = 2k for k < d− 1.

proof. Let ı̂k be an arbitrary unit vector with k < d− 1. By lemma 2.1, all

the positions less than 2k can be reached from ı̂k because the maximum weight

of such positions is d − 2, so the maximum Hamming distance between such

positions and ı̂k is d−1. These positions have G-value ranging from 0 to 2k−1,

hence G(̂ık) = 2k

Q.E.D

Algorithm 2.1. The algorithm that generates G-value of unit vectors in Mock

turtle of length n and distance d follows:

1. G(̂ık) = 2k for k < d− 1.

2. For all general position P = P0P1P2...Pk of length k+1 such that wt(P) <

d−1, compute G(P) =
∑

i=1 G(̂ıi)Pi. We will call the set of all computed

G-values G.

3. G(̂ık+1) = mex{G}. Include G(̂ık+1) in G.

4. Repeat step 2 and 3 to generate all unit vectors up to ı̂n−1.

proof. G(̂ık) = k + 1 for k < 2 by lemma 2.2.

By definition of G-value, G(̂ık) = mex{G}, where G is the set of G-value for

all positions obtainable from ı̂k. Hence we only need to prove that G is indeed

such set.

Define P as the set of all positions that are obtainable in one move. Since

P has a maximum length k + 1, P < ı̂k+1. In addition, wt(P) < d − 1, so

wt(P + ı̂k+1) ≤ d− 1. Thus, by lemma 2.1, the set of all P is P. By definition

of G-value, G is the set of G-values for all elements in P.

Q.E.D

We present the Python 3.9 implementation of this algorithm in Appendix

A. In essence, this iterative algorithm will first find G-value of all the positions

that can be obtained in one move from a unit vector using previously generated

G-values, then compute G-value of the next unit vector by finding the minimal

excludant.

5

20
21

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

3 Construction of Lexicodes Using Mock Turtle

In this section, we aim to construct the parity check matrix of n, k, d lexicode

with predetermined n, d.

3.1 Parity Check Matrix of Lexicode

We first define g-value, which should be carefully distinguished from G-value

in game theory, It is first introduced by Brualdi and Pless[4]

Definition 3.1. Let d be an integer with 0 ≤ d ≤ n. Assume that the vectors in

Fn
2 have been listed in some order(in our case, lexicographic order): z1, z2, ...z2n .

We recursively define

g : Fn
2 → Z+ ∪ 0

as follows.

1. g(z1) = 0.

2. g(zi) is the smallest non-negative integer t such that wt(zi + x) ≥ d for

all vector x in {zi, ...zi−1} which satisfy g(x) = 4. If no such t exists we

define g(z) to be the smallest integer not in {g(z1), .., , g(zi−1)}.

We reword this definition by utilizing the minimal excludant operation.

Definition 3.2. Let d be an integer with 0 ≤ d ≤ n. Assume that the vectors in

Fn
2 have been listed in some order(in our case, lexicographic order): z1, z2, ...z2n .

We recursively define

g : Fn
2 → Z+ ∪ 0

as follows.

1. g(z1) = 0.

2. g(zi) = mex{G}, where G is the set of g-values of all x ∈ {z1, ...zi−1} such

that wt(zi + x) < d. 7 .

Theorem 3.1. [4] Let B be an ordered basis of Fn
2 and let d be an integer with

3 ≤ d ≤ n8. Then a parity check matrix for n for the B-greedy code C is

H =
[
g(̂ın) ... g(̂ı2) g(ı̂1)

]
7In other word, g(zi) is the minimal excludant of set of all g-values of its previous vectors

x that has a distance less than d with zi
8The original theorem states 0 ≤ d ≤ n, but for the purpose of this paper we restrict it to

3

6

20
21

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

where g-values are in binary.

proof. The proof is omitted and can be found in [4]

Q.E.D

Before we present one of the main theorems in this paper, one lemma is

needed:

Lemma 3.1. Let z ∈ Fn
2 and let d be an integer with 3 ≤ d ≤ n, then G(z) =

g(z), where G(z) is the Mock Turtle of length n and distance d.

proof. Assume Fn
2 is listed in lexicographic order. Let zk be an arbitrary

vector in Fn
2 and P be the set of all positions that is obtainable in one move

from z, G as defined in definition 3.2, and G be the set of G-values of all

elements in P. Thus, we need to prove G = G. By induction: In lexicographic

order, g(z1) = 0 = G(0), g(z2) = 1 = G(1). Suppose for some 0 ≤ j ≤ k,

g(zk) = G(zk). To prove the case for G(zk+1), let x ∈ z1, ..., zi−1 be any vector

satisfies wt(zk+1 + x) < d, and in lexicographic order zk+1 < x for all x, by

lemma 2.1 the set of all x is P, thus G = G.

Q.E.D

By substituting g(̂ıi) with G(̂ıi) in theorem 3.1, we derive the following

lemma:

Lemma 3.2. Let Fn
2 be lexicographically ordered. The parity check matrix for

[n, k, d] lexicode C is

H =
[
G(̂ın) ... G(̂ı2) G(ı̂1)

]
where G-values are in binary.

This result directly generates n, k, d lexicode.

Algorithm 3.1. The algorithm that generates the parity check matrix H of

[n, k, d] lexicode follows:

1. Apply algorithm 2.1 with length n and distance d

2. H =
[
G(̂ın) ... G(̂ı2) G(ı̂1)

]
, where G-values are in binary

proof. Step 1 generates the G-values of unit vectors for Mock Turtle of length

n and distance d, and Step 2 follows directly from lemma 3.2.

7

20
21

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

Q.E.D

The parameter of the lexicode generated in this manner can be found by the

theorem below:

Theorem 3.2. The parameter of lexicode generated by algorithm 3.1 is [n, n−
m, d], where m is length of G(̂ın) in binary.

proof. By lemma 3.2, the first column of a parity check matrix for the code

is G(̂ın). Since parity check matrix is (n− k)× n, m = n− k, and k = n−m.

Q.E.D

The author implemented these two results as a script in Python 3.9 in Ap-

pendix A.

We will present this result using the example of Extended Hamming code.

Theorem 3.3. [n, k, 4] lexicode is optimal. Specifically, for any [n, k, 4] lexicode

with n > 5, no [n, k, 5] linear code exist by sphere packing bound i.e.

1 + n +
n(n− 1)

2
> 2n−k

. In addition, for any [n, k, 4] lexicode with n > 5, no [n, k + 1, 4] code exists by

sphere packing bound, i.e.

1 + n > 2n−k−1

proof. By contradiction: Suppose for some n > 5, there is

1 + n +
n(n− 1)

2
≤ 2n−k

.

Then by theorem 3.2,

1 + n +
n(n− 1)

2
≤ 2m+2 = 4 · 2m

where 2m+1 > n− 1 ≥ 2m. Thus

1 + n +
n(n− 1)

2
≤ 4(n− 1)

Simplification gives

n2 − 7n + 10 ≤ 0

8

20
21

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

and hence 2 ≤ n ≤ 5. This contradicts the hypothesis of n > 5. Thus any

[n, k, 5] does not satisfy the sphere packing bound.

By contradiction: suppose for some n, [n, k + 1, 4] lexicode exists. By theo-

rem 3.2, the parameters of a [n, k + 1, 4] lexicode is [n, n− blog2(n)c+ 2, 4]. By

sphere packing bound:

1 + n < 2n−n+blog2(n)c−2

Simplifying gives:

log2(1 + n) < blog2(n)c

which is impossible since log2(1 + n) > log2(n) ≥ blog2(n)c
Therefore, no [n, k + 1, 4] code exists.

Q.E.D

This shows that the [n, k, 4] lexicode is indeed optimal, and it is in fact the

extended Hamming Code and its shortened version.

3.2 Generalization to minimal distances 5 and 6

Although the [n, k, d] lexicode can be determined using algorithm 3.1, the

time complexity of the algorithm hinders further studies. Nevertheless, the case

of [n, k, 5] and its extended code [n, k, 6] is computed and compared with the

known optimal bounds. 55 of the [n, k, 5] and [n, k, 6] new lexicodes matches

the optimal bounds provided in [6] and are optimal linear codes. Among the

non-optimal codes, 222 of them have dimension 1 less than the known bounds.

All computed codes are within 3 of the known optimal dimension.A detailed list

of such codes can be found in Appendix B.

Remark 3.1. The [n, k, 5] lexicodes have particularly strong dimension k for

smaller n. For example, for n ≤ 100, all codes are either optimal or 1 less than

the optimal bound, among which 49 are optimal.

Remark 3.2. As pointed out in [1], the [18, 9, 5] lexicode generated in this man-

ner is the binary quadratic residue code, and [18, 9, 6] is its extended code. Thus

we have provided a new way to generate the binary quadratic residue code.

Remark 3.3. The computation of k in lexicodes of minimal distance 5 provides

a empirical justification for lexicode being ”heuristic approximation” of optimal

codes, which was stated in [8].

9

20
21

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

4 Conclusion and Future Work

This paper studies binary lexicographic code of general minimal distance

by studying its related game Mock Turtle via Sprague-Grundy analysis. We

generated the parity check matrix of binary lexicographic codes by using g-

value of Mock Turtle. Some of our future work direction includes:

1. We would like to reduce the time complexity of Algorithm 3.1, which

largely hinders the study of this topic. To do so one research direction is

to solve the game Mock Turtle for a general minimal distance.

2. We would like to prove/disprove that there exists infinitely many [n, k, 5]

optimal lexicode. In addition, Are there infinitely many optimal lexicodes

of any minimal distance?

5 Acknowledgment

The author would like to express his sincerest gratitude to Professor Noah

Aydin for providing his generous support, extensive knowledge and valuable

advice for my research.

The research was mainly conducted under the capacity of Pioneer Research

Program, a program aims to mentor high school students to experience inde-

pendent academic research. Prof. Noah Aydin was the author’s mentor, who

taught coding theory background knowledge to the author. The author then

chose lexicographic code as his specific research topic due to his interest in com-

binatorial game theory, and then researched and read the background materials

with the help from Prof. Aydin. The author created the algorithm for Mock

Turtle, proved and computes the all results presented in the paper unless cited.

After the program, the author decided to participate in the Yau award, and

Prof. Aydin generously offered his mentorship free of charge.

The mentor of this paper, Prof. Noah Aydin is professor of mathematics

at Kenyon College, Ohio, and has his primary research interest in Algebraic

coding theory. His generous and enormous support is the most appreciated by

the author.

10

20
21

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

References

[1] J. Conway and N. Sloane, “Lexicographic codes: Error-correcting codes from

game theory,” in IEEE Transactions on Information Theory, vol. 32, no. 3,

pp. 337-348, May 1986, doi: 10.1109/TIT.1986.1057187.

[2] M. H. Albert, R. J. Nowakowski, D. Wolfe, ”Lessons in Play: an Introduction

to Combinatorial Game Theory”, by A K Peters, 2007, ISBN: 978-1-4398-

6437-1

[3] E. R. Berlekamp, J. H. Conway, R. K. Guy, ”Winning Ways for Your Math-

ematical Plays”, 3 vols, by Massachusetts, A. K. Peters, 2001, ISBN: 1-56881-

130-6

[4] R. A. Brualdi and V. Pless, ”Greedy Codes,” Proceedings. IEEE Interna-

tional Symposium on Information Theory, San Antonio, TX, USA, 1993, pp.

366-366, doi: 10.1109/ISIT.1993.748682.

[5] OEIS Wiki, by OEIS Foundation, https://oeis.org/wiki/Orderings#: :text=

When%20applied%20to%20numbers%2C%20lexicographic,ordered%20by

%20their%20smallest%20elements.

[6] “Generate Parameter Table for Linear Codes”, MinT, University of

Salzberg, http://mint.sbg.ac.at/table.php?i=c&var=q-T-%CE%BB-t-d-m-n-

k&miny=1&minx=1&dx=30&dy=17&mode=bd&opt=&b=2&de=1&p=sdn&col=1

[7] V. Pless, ”Introduction to the Theory of Error-Correcting Codes, 3rd ed, by

Wiley Interscience, 1998

[8] A. Trachtenberg, ”Designing lexicographic codes with a given trellis com-

plexity,” in IEEE Transactions on Information Theory, vol. 48, no. 1, pp.

89-100, Jan. 2002, doi: 10.1109/18.971740.

11

20
21

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

Appendices

A Code for G-value Generation

The following python codes generates all G(̂ık) for Mock Turtle of length n

and minimal distance d.

1

2 import itertools

3

4 def minimal_excludant(lst):

5 #finds minimal excludant of a tuple

6 lst = set(lst)

7 mex = 0

8 while mex in lst:

9 mex += 1

10 return mex

11

12

13 def nim_sum(tup):

14 #computes nim -sum of all elements in tuple

15 nimber =0

16 for g in tup:

17 nimber = nimber ^ g

18 return nimber

19

20 def g_generator(d, lst):

21 #computes all G(P), where P can be obtained

22 #within one move from the next unit vector

23 comb = []

24 sum_all = []

25 for i in range(2,d-1):

26 comb.extend(list(itertools.combinations(lst , i)))

27 sum_all.extend ((nim_sum(tup) for tup in comb))

28 return sum_all

29

30 def g_value(n, d):

31 #Output a list the contains g-value for unit vectors

32 G = [0]

33 G.extend (2 ** i for i in range(0,d-1))

34 ATOMIC_G = [2 ** i for i in range(0,d-1)]

35 for i in range(d-1, n):

36 G.extend(g_generator(d, ATOMIC_G))

37 mex = minimal_excludant(G)

38 ATOMIC_G.append(mex)

12

20
21

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

39 G.append(mex)

40 print(ATOMIC_G)

41 return ATOMIC_G

We present a sample here:

1 #Input: 8,4

2 #Output: [1, 2, 4, 7, 8, 11, 13, 14]

The nth element in the list is G(̂ın), e.g ı̂0 = 1.

The python implementation to generate the dimension of lexicode given n, d

follows:

1 def dimension_generator(n,d):

2 k = n - len(bin(g_value(n,d)[-1]))+2

3 print(k)

4 return k

Sample:

1 #Input: 8,4

2 #Output: 4

B Dimension of n, k, 5 Lexicode

The optimal n, k, 5 lexicodes from n = 4 to n = 512, a total of 55 codes, are

listed below:

[4, 0, 5] [5, 1, 5] [6, 1, 5] [7, 1, 5] [8, 2, 5]

[9, 2, 5] [10, 3, 5] [11, 4, 5] [12, 4, 5] [13, 5, 5]

[14, 6, 5] [15, 7, 5] [16, 8, 5] [17, 9, 5] [18, 9, 5]

[19, 10, 5] [20, 11, 5] [21, 12, 5] [24, 14, 5] [25, 15, 5]

[26, 16, 5] [27, 17, 5] [28, 18, 5] [29, 19, 5] [34, 23, 5]

[35, 24, 5] [36, 25, 5] [37, 26, 5] [38, 27, 5] [48, 36, 5]

[49, 37, 5] [50, 38, 5] [51, 39, 5] [52, 40, 5] [66, 53, 5]

[67, 54, 5] [68, 55, 5] [69, 56, 5] [82, 68, 5] [83, 69, 5]

[84, 70, 5] [85, 71, 5] [86, 72, 5] [87, 73, 5] [88, 74, 5]

[89, 75, 5] [90, 76, 5] [91, 77, 5] [92, 78, 5] [152, 136, 5]

[153, 137, 5] [154, 138, 5] [155, 139, 5] [156, 140, 5] [266, 248, 5]

and their extended codes.

The codes with dimension one less than the optimal bounds, are listed below:

13

20
21

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

[22, 12, 5] [23, 13, 5] [30, 19, 5] [31, 20, 5] [32, 21, 5] [33, 22, 5]

[39, 27, 5] [40, 28, 5] [41, 29, 5] [42, 30, 5] [43, 31, 5] [44, 32, 5]

[45, 33, 5] [46, 34, 5] [47, 35, 5] [53, 40, 5] [54, 41, 5] [55, 42, 5]

[56, 43, 5] [57, 44, 5] [58, 45, 5] [59, 46, 5] [60, 47, 5] [61, 48, 5]

[62, 49, 5] [63, 50, 5] [64, 51, 5] [65, 52, 5] [70, 56, 5] [71, 57, 5]

[72, 58, 5] [73, 59, 5] [74, 60, 5] [75, 61, 5] [76, 62, 5] [77, 63, 5]

[78, 64, 5] [79, 65, 5] [80, 66, 5] [81, 67, 5] [93, 78, 5] [94, 79, 5]

[95, 80, 5] [96, 81, 5] [97, 82, 5] [98, 83, 5] [99, 84, 5] [100, 85, 5]

[101, 86, 5] [102, 87, 5] [103, 88, 5] [104, 89, 5] [105, 90, 5] [106, 91, 5]

[107, 92, 5] [108, 93, 5] [109, 94, 5] [110, 95, 5] [111, 96, 5] [112, 97, 5]

[113, 98, 5] [114, 99, 5] [115, 100, 5] [116, 101, 5] [117, 102, 5] [118, 103, 5]

[119, 104, 5] [120, 105, 5] [129, 113, 5] [130, 114, 5] [131, 115, 5] [132, 116, 5]

[133, 117, 5] [134, 118, 5] [135, 119, 5] [136, 120, 5] [137, 121, 5] [138, 122, 5]

[139, 123, 5] [140, 124, 5] [141, 125, 5] [142, 126, 5] [143, 127, 5] [144, 128, 5]

[145, 129, 5] [146, 130, 5] [147, 131, 5] [148, 132, 5] [149, 133, 5] [150, 134, 5]

[151, 135, 5] [157, 140, 5] [158, 141, 5] [159, 142, 5] [160, 143, 5] [161, 144, 5]

[162, 145, 5] [163, 146, 5] [164, 147, 5] [165, 148, 5] [166, 149, 5] [167, 150, 5]

[168, 151, 5] [169, 152, 5] [170, 153, 5] [171, 154, 5] [172, 155, 5] [173, 156, 5]

[174, 157, 5] [175, 158, 5] [176, 159, 5] [177, 160, 5] [178, 161, 5] [179, 162, 5]

[180, 163, 5] [181, 164, 5] [182, 165, 5] [183, 166, 5] [184, 167, 5] [185, 168, 5]

[186, 169, 5] [187, 170, 5] [188, 171, 5] [189, 172, 5] [190, 173, 5] [191, 174, 5]

[192, 175, 5] [193, 176, 5] [194, 177, 5] [195, 178, 5] [196, 179, 5] [197, 180, 5]

[198, 181, 5] [199, 182, 5] [200, 183, 5] [201, 184, 5] [202, 185, 5] [203, 186, 5]

[258, 240, 5] [259, 241, 5] [260, 242, 5] [261, 243, 5] [262, 244, 5] [263, 245, 5]

[264, 246, 5] [265, 247, 5] [267, 248, 5] [268, 249, 5] [269, 250, 5] [270, 251, 5]

[271, 252, 5] [272, 253, 5] [273, 254, 5] [274, 255, 5] [275, 256, 5] [276, 257, 5]

[277, 258, 5] [278, 259, 5] [279, 260, 5] [280, 261, 5] [281, 262, 5] [282, 263, 5]

[283, 264, 5] [284, 265, 5] [285, 266, 5] [286, 267, 5] [287, 268, 5] [288, 269, 5]

[289, 270, 5] [290, 271, 5] [291, 272, 5] [292, 273, 5] [293, 274, 5] [294, 275, 5]

[295, 276, 5] [296, 277, 5] [297, 278, 5] [298, 279, 5] [299, 280, 5] [300, 281, 5]

[301, 282, 5] [302, 283, 5] [303, 284, 5] [304, 285, 5] [305, 286, 5] [306, 287, 5]

[307, 288, 5] [308, 289, 5] [309, 290, 5] [310, 291, 5] [311, 292, 5] [312, 293, 5]

[313, 294, 5] [314, 295, 5] [315, 296, 5] [316, 297, 5] [317, 298, 5] [318, 299, 5]

[319, 300, 5] [320, 301, 5] [321, 302, 5] [322, 303, 5] [323, 304, 5] [324, 305, 5]

[325, 306, 5] [326, 307, 5] [327, 308, 5] [328, 309, 5] [329, 310, 5] [330, 311, 5]

[331, 312, 5] [332, 313, 5] [333, 314, 5] [334, 315, 5] [335, 316, 5] [336, 317, 5]

[337, 318, 5] [338, 319, 5] [339, 320, 5] [340, 321, 5] [341, 322, 5] [342, 323, 5]

14

20
21

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

and their extended codes

15

	Introduction
	Generalization of Mock Turtle
	Construction of Lexicodes Using Mock Turtle
	Parity Check Matrix of Lexicode
	Generalization to minimal distances 5 and 6

	Conclusion and Future Work
	Acknowledgment
	Appendices
	Code for G-value Generation
	Dimension of n,k,5 Lexicode

