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Construction of Higher Universal Covering Spaces

Alexander Goo

Abstract

The universal covering space is a cover that is simply connected. A well known result states that for

any connected, locally path-connected and semi-locally simply connected, the universal cover exists and

is unique. One key property of the universal cover is that its homotopy groups are the same as the

space that we started off with with the key exception of the fundamental group which vanishes. In this

project, we aim to generalize this notion of a universal covering to higher homotopy groups, and find an

appropriate notion of covering spaces to kill off higher homotopy groups.

Keywords: Algebraic Topology, Homotopy groups, Category theory, Covering spaces
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1 Introduction

Galois correspondence has been around since Galois which in a vague sense, relates ‘extensions’ of an

object to the ‘subobjects’ of another object. The typical first example seen is the correspondence between

field extensions and their Galois groups, subgroups of the absolute Galois group. In topology, a similar

phenomenon occurs with covering spaces and their group of deck transforms, given by subgroups of π1.

While this idea has been known even before topology was formalized by mathematicians like Klein and

Riemann[1], not much is known about if we can generalize this idea to the higher homotopy groups πn, in

particular, due to the intricate yoga required to do such a generalization as the definitions of n-categories

are still not very well understood and agreed on. In this paper, we propose an approach to generalize

covering spaces in a way that is natural in a concrete sense.

One may quickly recognise that the Postnikov and Whitehead towers in homotopy theories have a very

similar idea. More specifically, they are:

Definition 1.0.1. [2] A Postnikov tower of a path connected space X is an inverse system of truncations

· · · → Xn → · · · → X2 → X1 → X0 = {∗}

such that the limit is X, π>n(Xn) = 0 and the natural map X → Xn induced by the limit gives us

an isomorphism of homotopy groups π≤n(X) → π≤n(Xn). Furthermore, each map in the system is a

fibration with the homotopy fibre of Xn → Xn−1 being K (πn(X), n), the Eilenberg-MacLane space.

This is most naturally constructed by considering the homotopy hypothesis and taking the truncations of

the fundamental ∞-groupoid. However, covering spaces are in some sense ‘opposite’ to this chain, hence

we can dualize it to obtain the Whitehead tower:

Definition 1.0.2. A Whitehead tower of a path connected space X is (trivial directed system of) maps

· · · → Xn → · · · → X2 → X1 → X0 = X

such that π≤n(Xn) = 0 and the natural map Xn → X induced by the diagram above gives us an isomor-

phism of homotopy groups π>n(X)→ π>n(Xn). Furthermore, each map in the system is a fibration with

the homotopy fibre of Xn → Xn−1 being K (πn(X), n− 1), the Eilenberg-MacLane space.

Such a system can be constructed by noticing that taking the homotopy fibre of X → Xn in the Postnikov

system flips which homotopy groups are killed. While X1 is indeed the universal cover, such constructions

are only up to homotopy and does not give us the Galois correspondence and the concrete constructions

in classical algebraic topology. However, it does suggest to us to study the most natural way to construct

these towers, using the fundamental ∞-groupoid and taking truncations.

We note that throughout this paper, we are not concerned with set-theoretic size issues. We assume

the reader is familiar with basic definitions in topology and category theory and we shall only review

definitions that aren’t covered in introductory courses in topology and category theory, such as from

Munkres’ Topology [3], Riehl’s Category Theory in Context [4] and Kashiwara and Schapira’s Categories

and Sheaves [5].

1.1 Review on topology and homotopy theory

One can find a more detailed exposition to homotopy theory in tom Dieck’s algebraic topology book [6]

and Jeffrey Storms’ book on classical homotopy theory [7].

We start off by giving some conventions that we will use. We use the following notations for standard

subspaces of Rn:

6
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Notation Name

Rn Euclidean space

Dn = {x ∈ Rn : ‖x‖ ≤ 1} n-disk

Sn = ∂Dn+1 =
{
x ∈ Dn+1 : ‖x‖ = 1

}
n-sphere

En = Dn − Sn−1 n-cell

In = {x ∈ Rn : 0 ≤ xi ≤ 1} n-cube

∂In = {x ∈ In : ∃i, xi = 0, 1} boundary of In

|∆n| =
{
x ∈ Rn+1 : xi ≥ 0,

∑
i xi = 1

}
n-simplex

|∂∆n| = {x ∈ ∆n : ∃i, xi = 0} Boundary of n-simplex

Suppose p : E → B is surjective with p−1(b) ∼= F for all b ∈ B and U ⊂ B is open, we use the following

conventions:

• Trivialization of p over U is a homeomorphism p−1(U)→ U × F

• p is locally trivial if a open covering U exists where a trivialization of p over U ∈ U exists for all

U

• U is a bundle chart

• F is the typical fibre

• p is trivial over U if a bundle chart over U exists

• Bundles/Fibre bundles are locally trivial maps

Covering space/Covering of B is a locally trivial trivial map p : E → B with discrete fibres

• If φU : p−1(U)→ U × F is a trivialization, then φ−1
U (U × {∗}) are the sheets over U

• If |F | = n, then p is a n-fold covering

• A trivial covering is the covering p : B × F → B

• U is admissible or evenly covered if a trivialization exists

• E is the total space and B is the base space

Definition 1.1.1. Exponential objects or Internal homs of a category C, denoted by ZY or HomC (Y,Z),

are objects that satisfy the following isomorphism:

HomC (X × Y,Z) ∼= HomC
(
X,ZY

)
= HomC (X,HomC (Y,Z))

The category Top does contain exponential objects, in particular

Theorem 1.1.2. If X is locally compact, then HomTop (X,−) exists and is given by the compact open

topology on HomTop (X,−)

We occasionally denote HomTop (X,Y ) by Y X if there will be no confusion.

We now recall the basic definitions of a homotopy

Idea. Homotopy intuitively encodes the notion of ‘moving from one point/function to another smoothly’

in a formal fashion.

Definition 1.1.3. Given morphisms f, g : X → Y of topological spaces, a homotopy is a morphism

H : X × I → Y such that H(−, 0) = f(−), H(−, 1) = g(−).

Definition 1.1.4. The category hTop is constructed by taking the category Top and identifying homotopic

morphisms as the same.

7
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Definition 1.1.5. Sn are naturally group objects, hence we define the groups πn(X) := HomhTop (Sn, X).

For n = 0, π0(X) is given by quotienting the points of the space X by homotopy, i.e. it counts the number

of path connected components.

Definition 1.1.6. A homotopy between points x, y ∈ X is a morphism f : I → X such that f(0) =

x, f(1) = y.

An important tool that we will use is the theory of fibrations, in particular,

Idea. In abelian categories, such as the category of

• Abelian groups

• Commutative rings

• Left/Right modules over a ring

the idea of a kernel and a cokernel is well defined and unique. Categorically, we define it

ker f = lim
(
A

f→ B ← 0
)

Concretely, this means that for any object X with morphisms that makes the following diagram commute:

X

kerA A

0 B

f

A unique morphism given by the dotted arrow exists such that the whole diagram commutes. Unfortu-

nately Top isn’t such a nice category, and we can’t enforce the uniqueness conditions, both for the kernel

and for the morphism. Hence we weaken the notion to get a fibration where the kernel, in this case the

fibre, exists up to homotopy and the induced morphism is no longer unique.

Definition 1.1.7. p : E → B has the homotopy lifting property (HLP) for X if for every h, a, there

exists some H such that the (equivalent) diagrams commutes:

B X × I

E X

p

a

x 7→(x,0)

h

H

E

B EI X

BI

a

h

H

p

pI

f 7→f(0)

f 7→f(0)

H is an lifting of h with initial conditions a.

Definition 1.1.8. If p has HLP for every space X, then it is a fibration.

Intuitively, fibrations are somewhat like epimorphisms with kernels. An important class of fibrations are

those coming from fibre bundles:

Lemma 1.1.9. If p : E → B is a fibre bundle, then it is a fibration ‘with kernel p−1(b)’. More precisely,

the sequence p−1(b)→ E → B is exact.

and we get the exact sequence

Theorem 1.1.10 (Puppe sequene). If F → E → B is a fibre sequence, then the sequence

· · · → Ω2B → ΩF → ΩE → ΩB → F → E → B

is exact.

8
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and this gives us the exact sequence

Corollary 1.1.11.

· · · → πn(F )→ πn(E)→ πn(B)→ πn−1(F )→ πn−1(E)→ πn−1(B)→ . . .

1.2 Review on simplicial sets

We often use simplicial sets in homotopy, and in a strict sense, this allows us to model every topological

space up to weak equivalence. We give the definitions of these sets here. One can find more information

in Goerss and Jardine’s book on Simplicial Homotopy theory [8] as well as the lecture notes by Prof. Dr.

Tobias Dyckerhoff from Universität Hamburg [9].

Idea. In constructing (co)homology groups, we often use complexes to turn a topological space into a

hopefully finite combinatorial object that is easy to work with, making (co)homology an extremely power-

ful computational tool. One way to do this is using simplicial complexes, where we assign (co)homology

groups based on a chosen triangulation of a topological space. However, choosing an arbitrary fixed

structure often leads to issues for less well-behaved spaces, hence one generalizes this idea into simplicial

sets, where we aim to provide a model of the category Top via an ‘abstract triangulation’.

Definition 1.2.1. Every ordinal α can naturally be realized as a poset category. This leads us to define

the category [α] where objects are the elements of α and morphisms are natural transformations of these

poset categories, equivalently, they are weakly monotone maps.

Definition 1.2.2. The category ∆ is defined as the ordinal category [ω].

Definition 1.2.3. The category of simplicial sets sSet is defined as Psh (∆) = HomCat (∆op,Set).

Definition 1.2.4. For S ∈ P ([n+ 1]), define the simplicial set ∆S as

∆S([m]) = {f ∈ Hom∆ ([m], [n]) |∃s ∈ S f([m]) ⊂ s}

Definition 1.2.5. From the previous definition, we obtain the following common simplicial sets:

• Standard n-simplex: ∆P ([n+1]) = Hom∆ (−, [n]) := ∆n

• Boundary of n-simplex: ∆P ([n+1])−{[n+1]} := ∂∆n

• ith horn of n-simplex: ∆P ([n+1])−{[n+1],[n+1]−{i}} := Λni

Definition 1.2.6. Define the coface map δnk : [n− 1]→ [n] as the unique injective map in ∆ that misses

k and the codegeneracy map σnk : [n+ 1]→ [n] as the unique surjective map in ∆ that hits k twice. Under

a simplicial set S, these gets turned into the face map dnk : S([n]) → S([n − 1]) and the degeneracy map

snk : S([n])→ S([n+ 1]).

Lemma 1.2.7. It turns out that all morphisms in ∆ are generated by all the δnk and σnk , so by defining

the face and degeneracy maps of a simplicial set, it is the same as defining the whole simplicial set. This

makes defining simplicial sets explicitly easier.

Definition 1.2.8. For any category C, define the nerve to be the simplicial set N(C) = HomCat ([n], C)
and the image of morphisms are given by composition.

Lemma 1.2.9. For a simplicial set, we have

K ∼= colim∆n→K ∆n

Definition 1.2.10. Given a simplicial set K, define the geometric realization to be

|K| ∼= colim∆n→K |∆n|

where |∆n| =
{
x ∈ Rn+1|xi ≥ 0,

∑
i xi = 1

}
is the standard n-simplex.

9
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1.3 Review on infinity categories

We will use infinity category to mean (∞, 1)-categories in this paper. We suggest checking out Moritz

Groth’s introduction on arxiv [10] and André Joyal’s book [11] before looking at Lurie’s books [12, 13].

Idea. Classically, the fundamental group and the higher homotopy groups require the consideration of

a base point and have a rather awkward construction and lose out on information about the other

homotopy groups or other possible base points. This can be resolved by considering the fundamental

infinity groupoid of a space. This ‘infinity category’ has objects as the points of a topological space,

morphisms as homotopies between the points, morphisms between morphisms as the homotopies between

homotopies and so on. It turns out that in a strict sense, this encodes all the information we need about

the topological space, known as the ‘homotopy hypothesis’[14]. We note that this ‘hypothesis’ is more of

a guiding principle as to how we should define various notions regarding infinity categories.

Definition 1.3.1. A simplicial set C is an (∞, 1)-category if for all 0 < i < n, every inner horn Λni → C
can be extended to a n-simplex ∆n → C, meaning the dotted morphism exists such that the diagram below

commutes (but may not be unique):

Λni

Λn C

Definition 1.3.2. If every horn (including i = 0, n) can be extended, the simplicial set is called a Kan

complex and is also a ∞-groupoid. While it is indeed an (∞, 1)-category, it is also a (∞, 0)-category as

all 1-morphisms are invertible up to homotopy.

Example. One can easily verify that N(C) is an (∞, 1)-category for any category C. Furthermore, the

extension in the definition above is unique by composition.

Example. Consider the functor

Π(X)([n]) = HomTop (|∆n|, X)

Every horn has a filling (even if i = 0, n) but this filling may not be unique. This functor is an (∞, 0)-

category and is known as the fundamental groupoid of X.

Definition 1.3.3. For a simplicial set K and a (∞, 1)-category C, we define the internal hom of sSet to

be

HomsSet (K, C) ([n]) = HomsSet (∆n ×K, C)

This allows us to define functors and natural transformations of (∞, 1) categories as the images of [0]

and [1] of this simplicial set respectively.

Theorem 1.3.4. The simplicial set defined in the previous definition is an (∞, 1)-category.

Definition 1.3.5. A n-morphism from x to y in an (∞, 1)-category C is a map ∆n+1 → C of simplicial

sets such that ∆n+1 sends ∆P ([n+1]) to x and ∆{n+1} to y.

Remark 1.3.6. In this way, we have constructed a category where all n-morphisms for n > 1 are invertible

‘up to homotopy’, thus the name (∞, 1) category.

Definition 1.3.7. The n-truncation of an infinity category C, denoted by τ≤nC, is constructed by identi-

fying n morphisms that are connected by an invertible n+ 1 morphism. We note that this is still a proper

(∞, 1)-category, but all the higher simplices are degenerate. Such a category is known as a (n, 1)-category

and the category of all (n, 1)-categories is given by n - Cat.

Example. We have τ≤nΠ(X) = Πn(X), the fundamental n-groupoid of a space. In particular, Π0(X) is

a discrete category where points are path connected components and HomΠ1(X) (x, x) = π1(X,x). This

also allows us to define HomΠn(X) (x, x) = πn(X,x).

10
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Example. Recall that we have a very natural motivation to give Top and (∞, 1)-category structure: 1-

morphisms are continuous functions, 2-morphisms are homotopies, 3-morphisms are homotopies between

homotopies, etc. To construct Top as a simplicial set, we define n-simplices to consist of the data

• Topological spaces Xi for 0 ≤ i ≤ n

• Maps fi,j : Xi × Ij−i−1 → Xj , 0 ≤ i, j ≤ n such that the ‘composition law at t = 1’ holds for all

0 ≤ i < j < k ≤ n:

fi,k (−, (u, 1, v)) = fj,k (fi,j (−, u) , v)

where the 1 is placed at the j − ith component (indexed from 1).

The face map dnk are defined by skipping the kth topological space and sets the appropriate skipped

element in Ij−i−1 to 0.

The degeneracy maps snk are defined by duplicating the kth topological space and duplicating the appro-

priate element in Ij−i−1.

One can quickly verify by the definition of a n-morphism, we do indeed get homotopy between homotopies

between etc.

Example. Similarly, we can define the category of all∞ groupoids∞ - Gpd as a (∞, 1)-category. Further-

more, by defining n-groupoids as the n truncated objects in ∞ - Gpd, we obtain the (n + 1, 1)-category

n - Gpd.

Lemma 1.3.8 (Homotopy hypothesis). The categories Top and ∞ - Gpd are equivalent via the functors

Π : Top→∞ - Gpd and | − | :∞ - Gpd→ Top

We will also recall the yoneda lemma for (1, 1)-categories and (∞, 1)-categories:

Lemma 1.3.9 ((1, 1)-Yoneda lemma). The functor C → Psh(1,1) (C) = HomCat (Cop,Set) is full and

faithful.

Lemma 1.3.10 ((∞, 1)-Yoneda lemma). The functor C → Psh(∞,1) (C) = Hom∞ - Cat (Cop,∞ - Gpd) is

full and faithful

And we will see later that covering spaces of a sufficiently nice space X are completely characterized by

functors from Π1(X) to Set. This suggests to us that if we want to generalize covering spaces naturally, we

should look at functors from Πn(X) to some appropriate generalization of Set to a higher n-category. The

goal would be to make this idea more concrete and study how the theory of covering spaces generalizes

over. This can be further motivated by considering the n-truncation of the (∞, 1)-Yoneda lemma, giving

us the functor

C → Psh(n,1) (C) = Homn - Cat (Cop, n - Gpd)

2 Categorification of covering spaces

We first present an alternative approach to covering spaces via category theory in a way that allows us to

generalize the arguments easily. This is a natural setting as one can easily studies the higher homotopy

groups via the∞-groupoid Π of a space. This approach was inspired by tom Dieck’s approach to covering

spaces [6]. We first provide a rough overview of this section:

Let CovX be the subcategory of TopX where objects are covering spaces. We first aim to construct a

functor

T : CovX → HomCat (Π1(X),Set)

and the inverse functor for a suitably nice space X

T−1 : HomCat (Π1(X),Set)→ CovX

11
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Then to study the Galois correspondence, we define the category G - Set that consists of left G-sets and

G-equivariant maps for any group G. This leads us to the chain of equivalent categories

CovX
T∼= HomCat (Π1(X),Set)

R∼= π1(X,x) - Set

and by restricting ourselves to the subcategory of transitive π1(X,x)-sets, these functors give us all the

connected coverings, recovering the classical Galois correspondence.

2.1 Construction of T : CovX → HomCat (Π1(X), Set)

Let p : A → X be a covering. We first show that this defines a functor T (p) : Π1(X) → Set by setting

T (p)(x) = p−1(x) and constructing the image of morphisms in Π1(X), then we show that morphisms

between coverings give us a natural transformation.

Lemma 2.1.1. Let p : A→ X be a covering. This naturally defines a functor T (p) : Π1(X)→ Set with

T (p)(x) = p−1(x)

Proof. Given some f ∈ HomΠ1(X) (x, y), this comes from some map f : I → X such that f(0) = x, f(1) =

y. We need to show that this induces a unique morphism T (p)(f) : T (p)(x) → T (p)(y). Consider the

diagram

A p−1(x)

X p−1(x)× I

p x7→(x,0)

f

F

where f : p−1(x)× I → X ignores the first component. Since p is a fibration, we know F exists such that

the whole diagram commutes. This gives us a morphism from T (p)(x)→ T (p)(y) but it does not gaurentee

uniqueness. Given two maps f0, f1 : I → X with a homotopy between them f : I × I → X, f(−, t) = f−,

since they give us the same morphism in Π1(B), we expect that the liftings F0, F1 constructed (note

that these liftings are not a priori unique) from the diagram above will give us the same morphism from

T (p)(x)→ T (p)(y). This can readily be shown by the diagram

A p−1(x)× (I × 0 ∪ ∂I × I) p−1(x)× I

X p−1(x)× I × I p−1(x)× I × I

p

F

f

H (−,0)

∼=

∼=

where F (a, ε, t) = Fε(a, t), ε ∈ {0, 1} and F (−, 0,−) is constant and f forgets the first component. This

gives us a homotopy F0(a, 1) → F1(a, 1), but since p−1(x) is discrete, this tells us that F0(a, 1) =

F1(a, 1) ∈ p−1(y), hence f ∈ HomΠ1(B) (x, y) induces a unqiue morphism F ∈ HomSet

(
p−1(x), p−1(y)

)
.

Lemma 2.1.2. Let p : A→ X, q : B → X be coverings with α : A→ B such that qα = p. This gives us

a natural transformation T (α) : T (p)→ T (q) by letting α act on the image of T (p).

Proof. From the condiiton above, we obtain a morphism of fibres by restriction αx : p−1(x) → q−1(x).

Consider the following diagram

A p−1(x) p−1(y)

X x y

B q−1(x) q−1(y)

α

p

q

T (p)(f)

T (q)(f)

f

p p

q q

α α

12
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The triangle on the left is by definition of α. The squares on the right commute by definition of T (−)

and the outer α of the squares commute by p = qα. Hence the whole diagram commutes and we get a

natural transformation T (α).

Theorem 2.1.3. The previous lemmas define a functor T : CovX → HomCat (Π1(X),Set)

Proof. We note that the condition in Lemma 2.1.2 is equivalent to a morphism

α ∈ HomCovX
(p : A→ X, q : B → X)

Hence, combined with Lemma 2.1.1, we have shown that T is indeed a functor.

2.2 Construction of T−1 : HomCat (Π1(X), Set)→ CovX

The main idea to construct the inverse functor is that we can ‘glue’ trivial fibres on small enough

open sets of X in a way compatible with the definition of T . We shall first construct the functor

T−1 : HomCat (Π1(X),Set)→ CovX , then show that T and T−1 are indeed inverses.

We restrict our attention to when X is path-connected, locally path-connected and semilocally simply

connected, as without these conditions, the universal cover does not even exist in classical algebraic

topology.

We start off by constructing the image of a chosen functor Φ : Π1(X)→ Set:

Lemma 2.2.1. The functor Φ gives us a covering space.

Proof. Define U ∈ U if U is an open set in X, Π0(U) is trivial and the image of HomΠ1(U) (u, u) in Π1(X)

is trivial.

For every u ∈ U ∈ U , U × Φ(u) has the obvious topology of a trivial fibre, i.e. we give Φ(u) the discrete

topology,(U,v). To glue all possible choices of u, U together, the appropriate categorical notion to consider

is a colimit.

By abuse of notation, let J be a diagram in Top consisting of elements

(U ∩ V )× Φ(u) := (U ∩ V, u) u ∈ U ∩ V U, V ∈ U

where U, V may be the same element.

We shall now construct such a colimit diagram. The simplest case is a morphism from (U ∩ V, u) to

(U, u), given by the inclusion map ι(U∩V,u),(U,u), which is evidently continuous.

To motivate the most general case, we first construct a morphism from (U, u) to (U, v), where u, v ∈ U ∈ U .

Let f ∈ HomΠ1(U) (u, v) be an arbitrary morphism and define the map

φ(U,u),(U,v)(w, s) = (w,Φ(f)(s))

This is independent of f as Φ
(
HomΠ1(U) (u, v)

)
only has a single element by the construction of U , and

since it is continuous, this is an appropriate morphism.

Now to construct a morphism from (U ∩V, u) to (U ∩V, v). Intuitively we want to define such a morphism

to be the composition

(U ∩ V, u)
ι(U∩V,u),(U,u)→ (U, u)

φ(U,u),(V,v)→ (U, v)
ι−1
(U∩V,v),(U,v)→ (U ∩ V, v)

but we need to verify that the final restriction map (U, v)→ (U ∩ V, v) does make sense and that it still

makes sense if we swap U, V . However, this is immediate if we select some

w ∈ U ∩ V, f ∈ HomΠ1(U) (u,w) , g ∈ HomΠ1(V ) (v, w)

and define

φ(U∩V,u),(U∩V,v)(x, s) = (x,
(
Φ
(
g−1

)
Φ(f)

)
(s)) = (x,Φ

(
g−1f

)
(s))

13



20
21

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

Research report 2021 S.T. Yau High School Science Award (Asia)

and by similar arguments to above, this is independent of our choice of f, g. Similarly it will be inde-

pendent if we swap U, V , hence is well defined. To show continuity, notice that for all path connected W

such that x ∈ W ⊆ U ∩ V , the Φ(c) component of image of φ(U∩V,u),(U∩V,v) restricted to W × Φ(u) is

independent of the input from W , and by the locally path connected assumption, this proves continuity.

Finally, we consider the space colim J . Every object in J has a natural map to X by inclusion and

ignoring the first component. Furthermore, by assumption, X is path-connected, so the fibres are all

the same and X is semilocally simply connected, so
⋃
U = X. Finally, every point has a locally trivial

neighbourhood by the construction of the colimit. Hence T−1Φ : colimJ → X is a covering.

Lemma 2.2.2. The above construction gives us the functor T−1 : HomCat (Π1(X),Set)→ CovX .

Proof. Now we need to verify that it is indeed a functor but this is immediate as a map

α ∈ HomHomCat(Π(X),Set) (Φ1,Φ2)

induces a map

(U ∩ V )× Φ1(u)
α→ (U ∩ V )× Φ2(u)

in a natural way, which by passing through the colimit construction in the proof above, gives us that T−1

is functorial.

Theorem 2.2.3. T is an equivalence of categories.

Proof. Throughout this proof, we will use the notations introduced in the previous proofs.

We are left with verifying that T and T−1 are inverses. We do this by first showing for a covering

p : A→ X, T−1(T (p)) ∼= p, then for a functor Φ : Π1(X)→ Set, T
(
T−1(Φ)

) ∼= Φ.

Let T−1(T (p)) = p′ : E′ → X. Recall that Top is a concrete category and since the injection map from

each object in the diagram J to E′ is a homeomorphism and E′ is set theoretically the colimit, E′ ∼= E

as topological spaces by the colimit topology.

Now we prove the final portion of the proof. Define T−1(Φ) = p : E → B and let x ∈ Π1(X), then

T
(
T−1(Φ)

)
(x) = p−1(x) = Φ(x)

by construction. Finally, suppose x, y ∈ U ∈ U , then evidently for any f ∈ HomΠ1(U) (x, y), we

have T
(
T−1(Φ)

)
(f) = f as there is only one choice of f in Π1(X). Now for any x, y ∈ X and f ∈

HomΠ1(X) (x, y), since [0, 1] is compact, f([0, 1]) is compact and there is a finite subcover consisting of el-

ements in U , and since each choice is unique, the composition is unique, giving us T
(
T−1(Φ)

)
(f) = f .

Corollary 2.2.4. With the same assumptions as before, T−1
(
HomΠ1(B) (b,−)

)
for any b ∈ B is simply

connected.

Proof. Let X = T−1
(
HomΠ1(B) (b,−)

)
, we have the fibre sequence π1(B) = HomΠ1(B) (b, b) → X → B.

Using the Puppe sequence Theorem 1.1.10, we see that

π1 (π1(B)) ∼= 0→ π1(X)→ π1(B)→ π0 (π1(B))→ 0 ∼= π0(X)

but since π1(B) = π0 (π1(B)), π1(X) = 0

2.3 Construction of Galois correspondence

This section aims to construct the equivalence of categories HomCat (Π1(X),Set)
R∼= π1(X,x) - Set. After

the tricky constructions in the previous subsections, the construction of the functors R,R−1 and showing

they are equivalent are relatively simple and does not require messy results from topology. To construct

R, we assume that X is path connected so that Π1(X) is connected.

Lemma 2.3.1. Every functor Φ : Π1(X)→ Set naturally gives rise to a π1(X,x) - Set

14
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Proof. We simply define the set Φ(x) with the action as π1(X,x)×Φ(x)→ Φ(x) given by (g, χ)→ Φ(g)(χ)

using the fact that π1(X,x) = HomΠ1 (x, x).

Lemma 2.3.2. The construction above is functorial, giving us the functor R

Proof. A natural transformation α : Φ1 → Φ2 partly consists of the following data:

Φ1(x) Φ2(x)

Φ1(x) Φ2(x)

α(x)

α(x)

Φ1(g) Φ2(g)

which is by definition π1(X,x)-equivariant, hence we get the functor R.

Lemma 2.3.3. Every π1(X,x)-set S naturally gives rise to a functor Φ : Π1(X)→ Set

Proof. Given any group G and a left G-set SL and a right G-set SR, recall the balanced product SR×GSL
is constructed by defining SR × SL as a left G-set with the action g(r, l) 7→

(
rg−1, gl

)
, then construct

SR ×G SL by the orbit set of SR × SL under the G-action.

Since HomΠ1(X) (x, y) is naturally a right π1(X,x) set by composition, we obtain the functor Φ(−) =

HomΠ1(X) (x,−)×π1(X,x) S where the maps of morphisms follows by acting on the first component.

Lemma 2.3.4. The construction above is functorial, giving us the functor R−1

Proof. Let f : S1 → S2 be a π1(X,x)-equivariant map and Φ1,Φ2 be the constructed functors from the

lemma above, then by the definition of equivariant, we obtain a natural transformation from Φ1 to Φ2

by acting on the second component.

Theorem 2.3.5. R and R−1 are inverses

Proof. Let S be a π1(X,x)-set. We have

R−1 (R(S)) = HomΠ1(X) (x, x)×π1(X,x) S ∼= S (f, s) 7→ f(s)

hence R−1R is the identity.

Let Φ : Π1(X)→ Set be a functor. We have

R
(
R−1(Φ)

)
= HomΠ1(X) ((, x) ,−)×π1(X,x) Φ(x) ∼= Φ(−) (f, s)→ Φ(f)(s)

hence RR−1 is the identity.

Corollary 2.3.6. Suppose X has a universal cover C. The subcategory of connected covers in CovX is

equivalent to the subcategory of transitive π1(X,x)-sets in π1(X,x) - Set.

Proof. Let S be a transitive π1(X,x)-set. We note that such a set is equivalent to π1(X,x)/G where G

is any subgroup of π1(X,x). We see that

R−1(S) = HomΠ1(X) (x,−)×π1(X,x)
π1(X,x)

G

which intuitively ‘quotients’ the Π1(X). Now consider some connected cover p : A → X with fibre

T (p)(x). We see that the long exact sequence of homotopy groups gives us

π1 (T (p)(x)) ∼= 0→ π1(A)→ π1(X)→ π0 (T (p)(x))→ 0 ∼= π0(A)

which tells us that π1(A) is a subgroup of π1(X) and T (p)(x) is the coset space π1(X)/π1(A). This

immediately shows that the two subcategories are equivalent by associating G with π1(A).

This final corollary gives us the Galois correspondence between subgroups of π1 and connected covering

spaces promised at the start of this paper and concludes this section.

15
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3 Generalization to higher homotopy groups

Consider the categories n - Gpd = τ≤n∞ - Gpd. Define the category n - CovX as the subcategory of TopX

where maps are fibre bundles with fibres being an element of (n − 1) - Gpd (after taking the geometric

realization), or by using the homotopy hypothesis, the spaces with trivial π≥n.

Example. Let n = 1, we obtain n - Gpd = Set and n - CovX being the category of covering spaces.

In this section, we aim to construct the functor

T : n - CovX → Hom∞ - Gpd (Πn(X), (n− 1) - Gpd)

for all spaces X, and determine a ‘suitably nice condition’ for the inverse functor

T−1 : Hom∞ - Gpd (Πn(X), (n− 1) - Gpd)→ n - CovX

to exist.

3.1 Construction of T : n - CovX → Hom∞ -Gpd (Πn(X), (n− 1) - Gpd)

We shall first construct the functor T : n - CovX → Hom∞ - Gpd (Πn(X), (n− 1) - Gpd) of a (n, 1)-

categories treated as (∞, 1)-categories.

We will require a quick technical lemma

Lemma 3.1.1. Let p : A→ X be a fibration, then the following lifting problem can be solved:

|∆n−1| A

|∆n| X

p(−,0)

Fn−1

fn

Fn

Proof. We show this by deforming |∆n−1| × I to |∆n| while keeping |∆n−1| × {0} fixed. This can easily

be done by simply scaling the rays from the centre appropriately, hence this lifting problem can be

solved.

We shall also recall what a n-simplex is in ∞ - Gpd with some examples:

Definition 3.1.2. Using the example given in the section on ∞ categories, we have explicitly

• A 0-simplex is given by an object X0

• A 1-simplex is given by the 0-simplices X0, X1 with a map f0,1 : X0 → X1

• A 2-simplex is given by the 1-simplices f0,1 : X0 → X1, f0,2 : X0 → X2, f1,2 : X1 → X2 with a

homotopy H0,2 : f0,2 → f1,2 ◦ f0,1

• A 3-simplex is given by the 2-simplices

{X0, X1, X2, f0,1, f0,2, f1,2, H0,2}, {X1, X2, X3, f1,2, f1,3, f2,3, H1,3}

and the homotopies

H0,3,0 : f0,3 → f2,3 ◦ f0,2 H0,3,1 : f0,3 → f1,3 ◦ f0,1

The final one is rather hard to understand so we provide a diagram:

X0 X2 f0,3 f2,3f0,2

f1,3f0,1 f2,3f1,2f0,1

X1 X3

f0,1
f1,2

f2,3

f0,2

f1,3

f0,3

f1,3=f2,3f1,2
f0,2→f1,2f0,1

16
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In the context of topological spaces, if the morphisms are paths from points, the ∆n − ∂∆n would be the

higher homotopies.

Note that Hom∞ - Gpd (Π(X), (n− 1) - Gpd) = Hom∞ - Gpd (Πn(X), (n− 1) - Gpd), hence we shall use the

first representation as it is simpler to work with.

Lemma 3.1.3. Let p : A → X ∈ n - CovX , then this defines a functor T (p) : Π(X) → (n − 1) - Gpd by

T (p)(x) = Π
(
p−1(x)

)
Proof. We define T (p)(x) = Π

(
p−1(x)

)
for all x as all morphisms are invertible (up to homotopy) in Π(X).

We note that the geometric realization of this groupoid is the fibre itself by the homotopy hypothesis.

Let’s recall what it means for T (p) to be a functor in this case. We require for every f : [b] → [a] in ∆,

the following diagram commutes

Π(X)([a]) Π(X)([b])

n - Gpd([a]) n - Gpd([b])

Φ([b])

Π(X)(f)

n - Gpd([f ])

Φ([a])

With the definition given above, we see that all we need to do is construct a well defined map from n-

simplices of X to n-simplices of p−1(x). Let fn : |∆n| → X be a n-simplex of X, then we can inductively

use the following diagram, which has a lift by Lemma 3.1.1, to construct a n-endomorphism of T (p)(x):

p−1(x)× |∆n−1| X

p−1(x)× |∆n| A

p

fn

Fn−1

(−,0) Fn

which by restricting the domain of Fn−1 to a n-simplex, we obtain the desired automorphism. Similarly,

we need to show that the image of p−1(x) × |∆n−1| is unique, in this case up to n-homotopy as we are

mapping into a n-groupoid.

Similar to the previous section, we have a uniqueness of the lifts up to n-homotopy as any n-homotopy

acting on (n − 1)-homotopies in T (p) are trivial. This gives our functor up to n-homotopy which is

sufficient.

Theorem 3.1.4. The above construction gives us the functor T .

Proof. Similar to the previous section, the functorality is by definition of a map of n-covers. This gives

us the functor T .

3.2 Construction of T−1 : Hom∞ -Gpd (Πn(X), (n− 1) - Gpd)→ n - Cov

As with the previous section, we first start with a functor Φ : Πn(X) → (n − 1) - Gpd and construct a

covering space by gluing fibres. We require a stronger semilocally simply connected condition in this case

Definition 3.2.1. X is n-semilocally simply connected if for every x ∈ X, there exists a x ∈ U such that

Π0(U) is trivial and the image of HomΠn(U) (u, u) in Πn(X) is trivial.

Similar to the classical case, we assume that X is path-connected, locally path-connected, n-semilocally

simply connected in order to construct the functor T−1.

Lemma 3.2.2. The functor Φ gives us a covering space.

Proof. Define U ∈ U if U is an open set in X, Π0(U) is trivial and the image of HomΠn(U) (u, u) in Πn(X)

is trivial.
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For every u ∈ U ∈ U , U × |Φ(u)| has the obvious topology of a trivial fibre. To glue all possible choices

of u, U together, we do the same construction as in the previous proof for the classical case.

By abuse of notation, let J be a diagram in Top consisting of elements

(U ∩ V )× |Φ(u)| := (U ∩ V, u) u ∈ U ∩ V U, V ∈ U

where U, V may be the same element.

Using a similar construction as the previous proof, we construct the maps φ(U∩V,u),(U∩V,v) in the diagram

using the 1-morphisms.

We can immediately extend this to the k-morphisms, k ≤ n + 1, by mapping k-simplices in Φ(u) from

(U ∩ V, u) to (U ∩ V, v). This is enabled with the modified condition that the image of HomΠn(U) (u, u)

in Πn(X) is trivial.

Finally, we consider the space colim J . Every object in J has a natural map to X by inclusion and

ignoring the first component. Furthermore, by assumption, X is path-connected, so the fibres are all the

same and X is n-semilocally simply connected, so
⋃
U = X. Finally, every point has a locally trivial

neighbourhood by construction of the colimit. Hence T−1Φ : colimJ → X is a covering.

Theorem 3.2.3. T is an equivalence of categories

Proof. The proof here is extremely similar. The fact that T−1T is the identity comes from the fact that

Top is a concrete category and for any Φ, we can show TT−1(Φ) ∼= Φ up to a n-homotopy by using

the fact that [0, 1]n is compact and X is n-semilocally simply connected in an identical manner as the

previous section.

3.3 Construction of Galois correspondence

Similar to the previous section, we will assume X is path-connected. To construct our Galois corre-

spondence, we will need a generalization of π1(X,x) - Set. We see that we can redefine π1(X,x) - Set as

functor category of functors from HomPi1(X) (x, x) to Set. This suggests the proper generalization is

by considering the full subcategory Πn(X)|x of Πn(X) that only consists of the one object x, then the

category Homn - Cat (Πn(X)|x, (n− 1) - Gpd) as a substitute for π1(X,x) - Set, which reduces down to the

simpler case for n = 1.

In this perspective, the constructions of the functor

Hom∞ - Gpd (Πn(X), (n− 1) - Gpd)
R

 Homn - Cat (Πn(X)|x, (n− 1) - Gpd)

is somewhat easier than the previous section as it is simply stating that the categories Πn(X) and

Πn(X)|x are equivalent induces by the diagonal functor ∆x : Πn(x) → Πn(X)|x and the inclusion

ι : Πn(X)|x ↪→ Πn(X) as Πn(X) is connected.

To get a reasonable Galois correspondence here, we need to consider what functors in

Homn - Cat (Πn(X)|x, (n− 1) - Gpd)

correspond to ‘subgroups’. This is precisely given by the subcategory of full functors. In this case, we

will also get that the n-morphisms of the image are precisely subgroups of πn(X,x).

This gives us our Galois correspondence from subgroups to covering spaces, namely:

Theorem 3.3.1. We have the functors

n - Covx
T

 Hom∞ - Gpd (Πn(X), (n− 1) - Gpd)

R

 Homn - Cat (Πn(X)|x, (n− 1) - Gpd)

if X is path-connected, simply path-connected and n-semilocally simply connected.

Proof. The functor R was constructed in the discussion above and T in the previous subsections.
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And as before, we can define the universal cover as Cn,X = T−1
(
R−1 (Φid)

)
where Φid is the functor

that sends everything into the trivial groupoid of one object and only the identity, then we have

Corollary 3.3.2. Furthermore, the subcategory of connected covers is equivalent to the subcategory of

full functors under the functor R ◦ T . This tells us that T−1R−1 maps certain tuples of subgroups of

π≤n(X,x) to connected n-covers.

Proof. We have similar to the previous section that these are simply quotients of the universal cover.

The fact that we do get a nice subgroup structure is a direct application of the Puppe sequence. The

image of R−1 gives us the fibre, which when put under into the Puppe sequence, gives us a connected

cover with a exact sequence giving us the homotopy groups of the cover. Let the fibre and cover formed

from this be F =
∣∣R−1(−)

∣∣ and A = T−1
(
R−1 (−)

)
respectively, we have

πn(F ) = 0→ πn(A)→ πn(X)→ πn−1(F )→ · · · → π1(A)→ π1(X)→ π0(F )→ 0 ∼= π0(A)

This final corollary gives us our Galois correspondence between subgroups of π≤n and connected n-

covering spaces.

4 Conclusion and future work

We have proven usual facts about the universal cover, which exists over a connected, simply-connected,

semilocally simply-connected space. In contrast to usual topological construction, we used a categorical

approach here, leaning towards infinity categories and conclude by proving the Galois correspondence

between connected covers and subgroups by constructing the functors

CovX
T∼= HomCat (Π1(X),Set)

R∼= π1(X,x) - Set

from the category of covering spaces to an intermediate functor category then to the category of all sets

with a left π1(X,x) action. This gives us the universal cover as the preimages of the singleton set in

pi1(X,x) - Set.

This lets us port everything over into higher categories and generalize all our theorems by replacing this

with

n - CovX
T∼= Homn - Gpd (Πn(X), (n− 1) - Gpd)

R∼= Homn - Gpd (Πn(X)|x, (n− 1) - Gpd)

for path-connected, locally path-connected and n-semilocally simply connected spaces where n-semilocally

simply connected is a stronger condition that requires vanishing πn for covers.

In this context, our universal cover is the preimage of the trivial functor, namely the one that sends

objects to the trivial groupoid consisting of only one object and only the identity. This map also maps

certain tuples of subgroups of π≤n(X,x) to connected n-covers, which gives us our Galois correspondence

where the subgroups are now ‘subgroupoids’ to ensure that all the homotopy groups are compatible, for

instance in the Puppe sequence, to form a connected n-cover.

In the future, we would like to provide a more concrete condition on the subgroups that can be phrased

purely group-theoretically as well as study the universal n-cover in more concrete contexts. Possible

appearances include the study of higher Lie groups from string theory [15]. One could also hope that we

can modify this to work with various types of manifolds and then extend it to complex manifolds and

finally algebraic geometry.
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