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Stochastic Bionic Model of Physarum Polycephalum Multi-Source 

Food Foraging for Minimum Spanning Trees and Graph Clustering  

Xiyuan Cao 

Abstract: 

This paper investigates a bionic computing algorithm based on swarm intelligence that 

simulates the intelligent behavior of the multi-source food foraging of Physarum polycephalum. An 

algorithm called PMA-MST1  is proposed that can determine the minimum spanning tree of a 

network. After statistical principles are introduced to PMA-MST, it can perform clustering based on 

the determined minimum spanning tree. The proposed PMA-MST algorithm is embedded with 

randomness, and its uncertainty property leads to the parallelism of the algorithm, which is 

beneficial for improving computational efficiency and determining the globally optimal solution. 

Several examples, including those on power grid optimization and test datasets, demonstrate that 

the method is effective, stable, and robust. 

Key words: Physarum polycephalum, PMA-MST algorithm, randomness, minimum spanning tree, 

graph clustering, intelligent computing 
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1. Introduction 

Abundant phenomena in the natural world can be imitated by humans. For example, people 

study bionic algorithms that imitate the behaviors of groups of creatures in nature. Many algorithms 

have been developed, including ant colony optimization, particle swarm optimization, the wolf pack 

algorithm, artificial bee colony algorithm, glowworm swarm optimization, the artificial fish swarm 

algorithm, and bacteria foraging optimization, to simulate swarm intelligence (Beni G, Wang J. 

1989)2. This kind of bionic algorithm is sometimes called nature-inspired computing (NIC), and it 

has a wide range of applications (Shadbolt, 2004; Lilakari, Grzegorz Rozenberg, 2008). NIC can 

solve many problems such as complex optimization, neural networks, the traveling salesman 

problem, the knapsack problem, clustering, and classification, and is used in many fields such as 

the life sciences, road network planning, power system dispatching, pattern recognition, and 

communication networks. In the process of exploring the phenomena of life, researchers are 

constantly constructing new models to imitate its exquisiteness, and the Physarum polycephalum 

bionic algorithm is one of them. 

P. polycephalum is a single-celled organism with no advanced nervous system or even neurons. 

However, a large number of P. polycephalum can self-organize to form a foraging network without 

any global information coordination. P. polycephalum's behavior mechanism can be imitated to 

solve the maze problem (Toshiyuki Nakagaki, 2000). Tero (2010) even reported that Physarum can 

form a foraging network similar to the actual railway network topology in Tokyo. In addition, P. 

polycephalum can also solve geometric problems and logic gate problems, identify directions, and 

exhibit spatial and behavioral memory3 . In addition, it can effectively simulate the American 

highway network (Adamatzky A and Jones J, 2010), and solve complex problems in wireless sensor 

networks (Tsompanas M-A I, Mayne R, Sirakoulis G C and Adamatzky A I 2015, 2015). The 

extraordinary and seemingly intelligent P. polycephalum has been studied since 1822 (von 

Schweinitz L D), and is still a popular topic for cell biologists, chemists, physicists, computer 

scientists, and many other scientists in different fields. 

The minimum spanning tree (MST), also known as the minimum cost spanning tree, refers to 

the spanning tree with the lowest cost generated in an undirected connected network4 (that is, a tree 

with the shortest total path or the smallest weight). The MST is of great significance in a network 

graph, and it represents the most effective structure contained in that network. 

Clustering is the process of dividing a set of objects into subsets to determine the categories to 

which these objects belong. The classification for clustering is unknown, and the clustering process 

is performed using unsupervised learning. Clustering is an important research topic in pattern 

recognition and data analysis, and has been applied in many fields. Graph clustering is clustering 

 
2 Swarm intelligence research is a branch of artificial intelligence, which mainly studies how simple individuals 

achieve orderly and structured organization through simple interactive behaviors and then produce meaningful 

behaviors and meaningful results. For example, the principle of an artificial neural network is that a large number 

of simple neurons cooperatively work through connections and information exchange. As a result, a structuralist 

artificial intelligence method with a brain-like function is produced. 
3 http://www.im.cas.cn/kxcb/wswdjt/201309/t20130926_3939681.html 
4 A subgraph generated from a network graph composed of N nodes contains all N vertices and n − 1 edges in the 

original network graph. Each edge of spanning tree T is given a weight (the length of each edge), and the sum of 

the weights is called the weight of the tree. The spanning tree with the smallest total weight value is called the 

MST of the graph. 
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based on graphs. Here, a graph is a network graph composed of vertices and edges, and graph 

clustering divides a network graph into several subgraphs. Many application scenarios in modern 

society include networks.  

Because of P. polycephalum's outstanding intelligence, this study employs the concept of 

stochasticity and proposes a bionic intelligent algorithm that imitates the multi-source food foraging 

of P. polycephalum. The main work includes the following contributions: a PMA algorithm to 

accelerate the PM algorithm, which is the classic model for P. polycephalum; the PMA-MST 

algorithm, which is based on a stochastic method to construct network MST; and a clustering 

method based on PMA-MST. The algorithm presented in this paper can solve both the MST and 

graph clustering problems effectively, as demonstrated by the numerical experiments. 

2. Related Work and the PM Algorithm 

2.1. Behavioral Characteristics of P. Polycephalum 

P. polycephalum, which is a multinucleated single-celled organism also known as slime mold, 

is a type of amoeba. Its life cycle goes through many forms, such as protoplasm, mycelia, zoospores, 

sporangia, and zygotes (Fig.1). It becomes a sclerotium when the environment is not suitable for 

survival, and it turns into a protoplasm when the environment improves. P. polycephalum has good 

deformability, and it can form its own foraging network without any global information coordination 

using amorphous finger-like, leaf-like, or needle-like protrusions on the body surface. According to 

biologists, this is because its cells exchange different chemical signals according to the conditions 

of light, pressure, temperature, humidity, and substance exchange in the environment. This then 

produces chemical reactions, which lead to oscillations and other phenomena. In P. polycephalum’s 

foraging process, pipelines for transporting nutrients are formed, and the diameters of the pipelines 

increase and decrease with the change of nutrient sources (Christina Oettmeier, Klaudia Brix, Hans-

Günther DBE Reiner, 2017). In addition, this experience is saved in memory (Mirna Kramar, Karen 

Alim, 2021). The rhythmic shrinking of cells causes the protoplasm to stream and then spread in 

different directions, evolving with changes in the environment. Some transportation pipelines 

become thicker, while others shrink, until the optimal foraging network is finally formed. 

              
Fig. 1 Protoplasm morphology of P. polycephalum and its life cycle 

(Christina2017; Andrew Schumann, Krzysztof Pancerz, 2016.) 
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T. Nakagaki et al. (2000) found that, on a maze formed by an agar surface, P. polycephalum 

can determine the shortest path between two the positions of nutrient agar blocks placed in the maze， 

as shown in Fig.2. That is, P. polycephalum can determine the shortest path that connects two food 

sources in a network. In 2010, a Japanese research team found that Physarum can connect food 

sources that represent 36 geographical locations in Tokyo. The resulting nutrient network was not 

only similar to the actual railway network structure, but also consistent in cost and transportation 

efficiency. Kramar and Alim (2021) studied the ability of P. polycephalum to find food through 

memory. It was found that P. polycephalum can store empirical information during its growth. 

 

Fig. 2 Maze experiment. First, a maze pattern is constructed on the surface of the agar. Second, the 

P. polycephalum fragment is placed in the maze. P. polycephalum fragments begin to grow and 

spread outward, filling the maze. Nutritional food sources were then placed at the entrance and 

exit of the maze (AG). Here, α1 and α2 (α1>α2) as well as β1 and β2 (β1≈β2) are the alternative 

competitive paths in the maze. Over time, some pipelines in the network of P. polycephalum 

gradually shrank and disappeared, forming the final stable network. Many experiments verified 

that the pipes with shorter paths were retained, longer pipes disappeared, and the probabilities that 

pipelines with similar path lengths remained were equal.  

P. polycephalum, which has been living on the earth for hundreds of millions of years, has no 

brain or nerve cells and is not a higher organism. Therefore, we cannot attribute its intelligent 

behavior to the nervous system, as we can in higher organisms. However, even without a central 

control mechanism, an efficient network can be constructed during the foraging process. The 

constructed network can change its shape according to the environment and achieve economic and 

efficient self-optimization, which demonstrates the intelligent behavior of P. polycephalum. Its 

evolutionary mechanism needs further exploration. 

Researchers have abstracted the behavioral characteristics of P. polycephalum to design rules 

and develop algorithms that imitate the evolutionary behavior of P. polycephalum. These algorithms 

include the PM, Oregonator, CELL, and Jones models. The most influential one is the PM model 

proposed by Tero et al., which is described in detail in the next section. In addition, the Oregonator 

model (Adamatzky,2009) simulates the oscillation phenomenon in the Belousov–Zhabotinsky 

reaction process, which describes the growth and foraging behavior of P. polycephalum through 

changes in reactant concentration. Adamatzky suggested that P. polycephalum can be thought of as 

a biological computer. The CELL model is described as an aggregation of lattice sites in a particular 

state (Gunji,2008), and it can be migrated and modified to simulate the evolution process of P. 

polycephalum. The Jones model consists of a number of agent particles with perceptive ability. 

According to the concentration of food chemicals, they gradually move from the initial random 
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distribution and gather at the food source, finally forming a food source network that reflects the 

emerging group behavior of agent particles. 

In a word, because of the surprising behavior of P. polycephalum, increasingly more scientists 

have desired to imitate the growth and behavior of P. polycephalum from the group perspective (the 

PM and Oregonator models) or individual perspective (the CELL and Jones models). The 

corresponding studies solve some problems such as the shortest path in a network and the traveling 

salesman problem. The bionic computation of P. polycephalum is different from traditional artificial 

intelligence (such as neural networks) and is instead a natural biological swarm intelligence method.  

2.2. PM Algorithm 

In 2000, Nakajaki discovered that P. polycephalum could solve the maze problem with the 

shortest path in a few hours. Tero et al. (2006) presented PM algorithm5, a mathematical model for 

solving maze and building network to simulate P. polycephalum's behavior based on Hagen–

Poiseuille's law and Kirchhoff laws (Tero, 2006,2007,2010). Most modern methods for studying the 

shortest distance of networks using bionic P. polycephalum models are based on this method. 

In the maze experiment, P. polycephalum first grows and spreads over the whole network. The 

protoplasm of the cells oscillates according to the conditions in the environment, and then some 

nutrient-channeling tubes shrink. In the process of pipe convergence and expansion, there is a 

positive feedback relationship between the pipeline radius and its flux. That is, an increase in flux 

leads to an increase in pipe radius, which in turn continues to cause increases in the flux in the 

pipeline. On the contrary, if the radius decreases, the flux decreases. The radius of a pipeline is 

related to the conductivity D, and the flux is denoted by Q. 

 

 

 

 

 

 

Fig. 3 Positive Feedback Principle 

The PM algorithm, which is based on the principle of positive feedback, is as follows: 

   Conductivity D is related to the pipe radius as 𝐷𝑖𝑗 =
𝜋𝑟4

8𝜂
, where r is the pipe radius, η is the 

viscosity of the fluid, which is a constant. In the network, the pressure at point i is 𝑝𝑖 and the pressure 

at point j is 𝑝j (here, i and j represent the two nodes of an edge). Finally, Lij denotes the length of 

edge ij. At the n-th time step, we have 

𝑄𝑖𝑗(𝑛) =
𝐷𝑖𝑗(𝑛)

𝐿𝑖𝑗
(𝑝𝑖 − 𝑝𝑗).                                 (1) 

This is Poiseuille’s law, which describes the relationship between flux and conductivity. There is 

only one source node 1 and one sink node 2 in the network. The sum ∑Qj of each node j is equal to 

flux Ij at this node. Therefore, ∑Q = I0 at source node 1 and ∑Q = −I0 at sink node 2. For other 

nodes in the network, we have ∑Q = 0. In addition, I0 is constant (e.g., I0 = 1). This gives us the 

 
5  Physarum solver - Modeling 

positive feedback 

Conductivity D flux Q 

positive feedback 
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following equation. 

∑𝑗
𝐷𝑖𝑗(𝑛)

𝐿𝑖𝑗
(𝑝𝑖 − 𝑝𝑗) = {

𝐼0 𝑓𝑜𝑟  𝑗 = 1
−𝐼0 𝑓𝑜𝑟  𝑗 = 2

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                           (2) 

At the n+1-th step, the change is conductivity D is related to function 𝑓(|𝑄𝑖𝑗|), which is optional. 

The adaptation equation is expressed as follows. 

𝑑𝐷𝑖𝑗(𝑛+1)

𝑑𝑡
= 𝑓(|𝑄𝑖𝑗|) − 𝐷𝑖𝑗(𝑛 + 1)                               (3) 

Then, the conductivity at the n+1-th step is expressed as 

𝐷𝑖𝑗(𝑛 + 1) = (𝑓(|𝑄𝑖𝑗(𝑛)|) − 𝐷𝑖𝑗(𝑛 + 1)) ×△ 𝑡 + 𝐷𝑖𝑗(𝑛),             (4) 

where 𝑓(|𝑄𝑖𝑗|) = |𝑄𝑖𝑗
𝜇

| = |𝑄𝑖𝑗| (μ=16). 

Let Δt = 1. Then, we have the following. 

𝐷𝑖𝑗(𝑛 + 1) = (|𝑄𝑖𝑗(𝑛)| − 𝐷𝑖𝑗(𝑛 + 1)) ×△ 𝑡 + 𝐷𝑖𝑗(𝑛) 

       Δt=1                 =(|𝑄𝑖𝑗(𝑛)| − 𝐷𝑖𝑗(𝑛 + 1)) + 𝐷𝑖𝑗(𝑛) 

∴  𝐷𝑖𝑗 (𝑛 + 1) =
1

2
(𝑓(|𝑄𝑖𝑗(𝑛)|) + 𝐷𝑖𝑗(𝑛)) 

                            =
1

2
(𝑓|𝑄𝑖𝑗(𝑛)| + 𝐷𝑖𝑗(𝑛))                       (5) 

When performing this calculation, the initial Dij is set to a random number; Lij is assigned; I0 = 

1; and p2 = 0. 

In this paper, the two examples are given, and the results are shown in Fig. 4. In example 1, the 

shortest path from 1 to 2 is finally chosen as 1→3→2, which has a total length of 3, which is less 

than the complete path (of length 5) from 1 to 2. 

 

          

Example 1: Three nodes and three edges         b. Example 2: Eight nodes and eight edges 

Fig. 4 Two examples of the PM algorithm, where node 1 is the source node, and node 2 is the sink 

node 

PM is used to establish a multi-food source model according to how P. polycephalum forms a 

foraging network for multiple (three or more) food sources. Only one source node and one sink node 

can be selected each time. However, the selection is random. That is, the whole process is divided 

into multiple time steps, and the source point and sink point are randomly selected each time. If sink 

j is selected first, the probability that other points i of the whole network are selected as source 

points is inversely proportional to the distance between node i and sink j. That is, the farther the 

node is, the more likely it is to become a source node. 

 
6 When the value is greater than 1, the convergence is accelerated and the shortest path is 

obtained; when the value is less than 1, the convergence is also accelerated (Zhou Huan, 2012). 
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2.3. Graph Clustering Method 

Clustering divides objects into different classes according to certain standards. Individuals in the 

same class have higher similarity, whereas individuals in different classes have relatively lower 

similarity 7 . There are many clustering algorithms, but each has its own advantages and 

disadvantages. Hence, there is no all-purpose way to solve all problems without any obstacles. 

The most classical clustering algorithm is K-means (J. B. MacQueen,1967), which is a 

clustering algorithm based on distance. Its main idea is to determine k class centers of data so that 

the sum of squares of the distances between data points in dataset and the center of the class is 

minimized. Then, the dataset is divided into k classes. Each class is called a cluster8. The K-means 

method suggests that distance is often the basis of classification in clustering. 

Network graph clustering refers to the division of vertices in a network graph. An edge of the 

network, as a weight (edge length), can indicate the similarity between two nodes. Network graph 

clustering divides the network graph into several subgraphs. The optimal partitioning problem of a 

graph is an NP-hard problem. 

In 1971, Zahn proposed the MST-based clustering algorithm. MST-based clustering searches 

for an MST in an undirected graph G=[V, E] (here, V denotes vertices, and E denotes edges), of 

which the edge length (e.g., Euclidean distance) represents the relationship between nodes. Then, 

the algorithm determines a threshold and removes the edges with weights that are greater than that 

threshold in the MST. This generates a forest, and every tree in the forest is regarded as a cluster9. 

The clustering algorithm of MST can detect clusters with arbitrary shapes (Jothi, Mohanty, & Ojha, 

2018)10. 

Prim’s and Krustal’s algorithms are commonly used to search for an MST, but these two 

algorithms start from local information and search gradually. The difference is that Krustal’s 

algorithm sorts the edges, but Prim’s algorithm does not. In this way, Krustal’s algorithm makes use 

of global information. 

3. Proposed PMA-MST Algorithm   

In this paper, MST and clustering algorithms for multi-source foraging of P. polycephalum are 

given as a comprehensive combination of the PM algorithm and MST-based graph clustering 

method. 

PM-MST algorithm, which is a P. polycephalum bionic algorithm, is described in this section. 

We first present an accelerated PMA algorithm. Then, the PMA multi-source foraging algorithm 

 
7 https://www.cnblogs.com/U940634/p/9758300.html 
8 The method is realized by the following steps: first, k data points are randomly selected as the initial cluster 

centers, the distance is calculated between each point in the data set and the selected cluster center, and each 

sample point is allocated to the corresponding cluster according to the principle of nearest distance. This is 

cyclically iterated using the average value of each data object contained in each cluster as the new cluster center, 

until the criterion function converges (the mean square error is usually used as the criterion, that is, the sum of 

squares of the distance from each point to the nearest cluster center is minimized). 
9 https://blog.csdn.net/sanshiguan/article/details/81038366 
10 Many clustering algorithms quantify the similarity between objects based on distance (such as Euclidean 

distance). However, when this method is used, only spherical clusters or convex clusters with similar size and 

density can be found. In many scenarios, by contrast, the shape of class clusters may be arbitrary. 

https://www.cnblogs.com/LittleHann/p/6595148.html 
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that models the P. polycephalum multi-source environment is described. The idea of randomness is 

incorporated into the PM-MST algorithm, which enables a parallel11 search of the MST between 

any two nodes in the network. Finally, the MST-based clustering algorithm is described. 

3.1. PMA: PM Accelerated Algorithm 

（1）. Principle of the Algorithm 

The positive feedback principle of PM algorithm is that the flux in the pipeline is inversely 

proportional to the distance L between nodes and directly proportional to the conductance D, as 

shown in Eq. (1). In this paper, we let the denominator in Eq. (1) be Lα, where the acceleration 

parameter α > 1. After testing, in general, α is set to no more than 10. When α>10, the calculated 

results will not change much. Parameter α also has other functions that are discussed in Section 5. 

Function Lα is a monotonically increasing function that makes the algorithm converge faster. 

PMA is calculated using the following equation. 

𝑄𝑖𝑗(𝑛) =
𝐷𝑖𝑗(𝑛)

𝐿𝑖𝑗
𝛼 (𝑝𝑖 − 𝑝𝑗)                           (6) 

（2）. Algorithm Verification 

Some examples were used to compare the performance of PM and PMA. The results show that 

PMA converges faster when searching the shortest path between two nodes. The aim in example 3 

(Fig.5) is to determine the shortest distance from node 1 to node 2 in a network graph with four 

edges and four nodes. The shortest path is 1→3→2, and the total path length is 6. The results are 

the same when α = 1 and α = 5, but when α = 5, the algorithm converges faster than when α = 1. 

Under the same total number of iterations, which is 25, the maximum difference between the D and 

Q of each edge in the last two steps when α = 5 is smaller than when α = 1, which indicates that 

larger values of α lead to faster convergence. Therefore, the convergence of the PMA algorithm is 

faster.  

 

 

 

 

 

 

       

 

Fig. 5 Example 3 

 

 

 

 

 

 
11 Randomness leads to uncertainty, which is related to the inherent parallelism of the algorithm. Wang Peng et al. 

(2010) believes that a natural algorithm introduces probability, and the parallelism of a natural algorithm originates 

from the uncertain searching systems constructed by it, which realizes a parallel search of the solution space. 

However, the cost paid is that finding the optimal solution of the problem cannot be ensured. 
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Table 1 Larger values of α result in faster convergence 

 α=1 α=5 

D 

 

max (|Dn- Dn-1|)= 0.0027 

 

max (|Dn- Dn-1|)= 7.2396e-07 

Q 

 

max(|Qn- Qn-1|)= 0.0016 

 

max (|Qn- Qn-1|)= 1.2484e-07 

3.2. PMA-MST Intelligent Bionics Algorithm       

（1）. Principle of the Algorithm  

The MST is characterized by low cost, where the cost is the total length (weight) of the MST. 

Using the PM algorithm, if the shortest path between any two nodes is calculated first, for n nodes, 

it should be performed 𝐶𝑛
2 =

𝑛(𝑛−1)

2
 times. Then, the minimum cost tree is selected through extra 

evaluations and comparisons. 

The aim of this study is to determine a MST with the minimum calculation cost. 

The MST is characterized by low cost, and hence the algorithm proposed in this paper makes 

the following basic assumptions: 1) the minimum cost refers to the shortest path between any two 

nodes on average and 2) if the cost is the global minimum, there will be no redundant edges (because 

redundant edges increase cost) and hence there will be no loops. 

In this study, we introduce the idea of stochasticity into PMA-MST. In every simulation, half 

of the nodes in the network are randomly set as the source nodes and the other half as the sink nodes. 

The source nodes and sink nodes are different every time. Intuitively, this is like holding half of an  

amount of seeds, and then sowing them randomly on the grid nodes, many times. 

If different nodes are used as source nodes and sink nodes, the PMA-MST algorithm will 

automatically determine the most economical flow allocation structure. If the flux of an edge is 0, 

this edge is a costly edge. If there still is flow in an edge, that is, the flux is greater than 0, this edge 

is a low-cost edge, and it is a final selection after the comprehensive optimization12. Every node of 

the whole network is a food source, which is the multi-food source foraging problem. In each 

calculation, the source node and sink nodes in the network are paired by themselves. Repeating 

these operations is the same as finding the average shortest distance between any two nodes of the 

network. Because the algorithm automatically allocates flow to each edge every time, it can 

ultimately automatically decide which edge needs to be kept and which edge needs to be removed. 

Therefore, the PMA-MST algorithm is intelligent. 

 
12
 Comprehensive optimization refers to a method that uses any two pairs of nodes as the source node and sink 

node, and the final edges selected by the algorithm are those edges that result in the smallest cost distance as a 

whole. Of course, we use the stochastic principle for simulation and calculation. 
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Fig. 6 Different sources and sinks randomly are generated by two different simulations. In the 

graph, the red circle indicates the source node and the blue diamond indicates the sink node. Each 

source node has a positive flow +I, and the sink node has a negative flow −I. The total sum of flow 

in the graph is 0. The results of two runs are shown, and the source nodes and sink nods are 

different each time. 

If there is an odd number of nodes in the network, we set 
(𝑛−1)

2
 as source nodes, 

(𝑛−1)

2
 as sink 

nodes, and the remaining node is equal to 0. 

The algorithm is run nk times, then we sum all Qk (k = 1 … nk) of each edge for each trial, and 

calculate its average and round it. The remaining edges are the edges of the minimum path of the 

network, that is, the MST. 

（2）. PMA-MST Process 
The process of PMA-MST is as follows: 

1. Set the number of simulation times nk; 

2. Assignment: half of the nodes in the network are set as source nodes with inflow I0, and 

the other half are set as sink nodes with outflow −I0; 

3. Run the PMA algorithm and record the flux Qijk of each edge every time (i, j is the number 

of network nodes and k is the number of simulation steps); 

4. At the end of simulation, the absolute value of flow |𝑄𝑘|of each edge is totaled13 to obtain 

the total flux sij of each edge; 

5. 𝑄𝑖𝑗
𝑚𝑒𝑎𝑛=sij/ nk, and round the result.  

6. For each edge, if𝑄𝑖𝑗
𝑚𝑒𝑎𝑛= 0, the edge is not preserved; otherwise, 𝑄𝑖𝑗

𝑚𝑒𝑎𝑛
 = 1 and the edge 

is preserved. 

3.3. Graph Clustering Algorithm Based on PMA-MST 

（1）. Principle of the Algorithm 

In this algorithm, we cut the edges exceeding the threshold θ in the generated MST. Threshold 

θ here is adjustable and is defined as follows: 

𝜃 = �̅� + 𝛽 ∙ 𝜎 .                               (7) 

Here, �̅� is the average length of the MST, σ is the standard deviation of the length of the MST, 

and β is its coefficient. 

In the theory of statistics, the mean value μ and standard deviation σ are very important. For 

instance, μ+σ contains 68% of the data, μ+2σ contains 95% of the data, and μ+3σ contains 99.7% 

of the data. Therefore, the standard of clustering can be adjusted. When β is smaller, more edges are 

 
13 Because flux Q can be negative, to prevent the positive and negative offset, the absolute value is taken. 
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removed, and classes are more divided. When β is larger, fewer edges are cut, and the classes are 

less divided. 

（2）. Graph Clustering Algorithm Process 

The graph clustering algorithm process based on PMA-MST is shown below. 

 

4. Numerical Experiment 

This paper presents three examples to demonstrate the use of the PMA-MST graph clustering 

algorithm. In the example 4, the original network has eight nodes and nine edges, as shown in Fig. 

7; in the example 5, the original network has seven nodes and 11 edges, as shown in Fig. 8; in the 

example 6, the original network has 25 nodes and 113 edges, as shown in Fig. 9. Each figure contains 

(Initialization) 

1. Random seeding: randomly select network nodes as source nodes and sink nodes; 

(For a network with n nodes, when n is an even number, n/2 nodes are set as the source 

nodes and n/2 nodes are set as the sink nodes; When n is an odd number, (n-1) /2 nodes are 

set as the source nodes, (n−1)/2 nodes are set as the nodes, and the flow at the remaining 

node is 0. ) 

2. Let I0 = 1 at the source node and −I0 = −1 at the sink node;  

 (Calculate the MST: PMA-MST) 

1. PMA algorithm 

（1）. Assign a random number to the conductivity Dij of each edge (i, j is the node 

number); p2 = 0; 

（2）. According to Eq. (2) at each node j, ∑𝑗
𝐷𝑖𝑗(𝑛)

𝐿𝑖𝑗
𝛼 (𝑝𝑖 − 𝑝𝑗) = {

1
−1
0

, solve for the 

pressure pj at each node j; 

（3）. According to Eq. (1), 𝑄𝑖𝑗(𝑡) =
𝐷𝑖𝑗(𝑡)

𝐿𝑖𝑗
𝛼 (𝑝𝑖 − 𝑝𝑗), calculate the flow Qij of each 

edge; 

2. Repeat PMA; 

3. Record the flux Qij
t of each edge at the end of each optimization. 

4. Calculate sij=∑ |𝑄𝑖𝑗
𝑡 |

𝑛𝑘
𝑡=1 , where nk is the number of random seeds sown; 

5. Calculate 𝑄𝑖𝑗
𝑚𝑒𝑎𝑛=sij/ nk and round it to the nearest integer to obtain the final result 𝑄𝑖𝑗

𝑒𝑛𝑑； 

6. If 𝑄𝑖𝑗
𝑒𝑛𝑑 = 0，the ij-th edge is removed; if 𝑄𝑖𝑗

𝑒𝑛𝑑 = 1, then this edge is retained; 

(Clustering) 

1. Calculate threshold θ using 

𝜃 = �̅� + 𝛽𝜎 

2. Remove the edges exceeding θ in the MST. 

3. Generate the final cluster. 
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the initial network graph (Figs. 7a–9a), the MST obtained by PMA-MST (Figs. 7b–9b), and the 

clustering result (Figs. 7c–9c). Numerical experiments show that the algorithm is effective and can 

obtain the MST and clusters. 

             
a. Initial network             b. MST            c. Clustering results 

Fig. 7 Example 4: The number of edges in the network before and after optimization are 9 and 7, 

respectively. The total edge lengths before and after optimization are 42 and 32, respectively. The 

nodes are divided into two clusters.  

        
a. Initial network             b. MST            c. Clustering results 

Fig. 8 Example 5: The number of edges of the network before and after optimization are 11 and 5, 

respectively. The total edge lengths before and after optimization are 539 and 111, respectively. 

The nodes are divided into two clusters. 

 

a. Initial graph 

 

 

 
b. MST                
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c. Clustering results 

Fig. 9 Example 6: The number of edges of the network before and after optimization are 113 and 

24, respectively. The total edge lengths before and after optimization are 5,879 and 310, 

respectively. The nodes are divided into five clusters. 

5. Discussion 

5.1 Keeping the Number of Graph Edges Sufficiently High and the Results Stable 

    When PMA-MST is used, the distribution of the edge lengths will affect the result. Sometimes, 

the number of edges in the shortest path network after optimization is less than n − 1. This occurs 

because the optimization is too strong and too many edges are removed, resulting in the failure of 

all nodes to be connected. Moreover, there may be multiple results, such as in the following example. 

             

a. Original network         b. Result 1: 5 edges         c. Result 2: 6 edges 

Fig. 10 Number of edges in the network before optimization are 18 and the numbers of edges in 

the optimized network are 5, and 6 for results 1 and 2, respectively, and the nodes cannot be 

connected to form a tree. 

   To avoid generating unreasonable optimization results, PMA-MST can be improved in three 

ways, as follows: 

1. Normalize all edge lengths using 

𝐿′
𝑘 =

𝐿𝑘−�̅�

𝜎
                                      (8) 

Here, Lk is the length of each edge, k = 1, 2, … m, where m is the total number of edges,                                                       

 �̅� =
∑ 𝐿𝑘

𝑚
𝑘=1  

𝑚
  , �̅�  is the mean of the edges, and σ  is the standard deviation, i.e., 𝜎 =

√
1

𝑛−1
∑ (𝐿𝑘 − �̅�)2𝑚

𝑘=1  .    

However, because the edges calculated by Eq. (8) can generate negative values, the algorithm is 

inaccurate, and hence the result is increased by 1 so that all the edge lengths become positive, that 
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is, 

𝐿′′
𝑘 = 𝐿′

𝑘 + 1 .                                 (9) 

2. Increase nk, the number of randomly sown seeds 

Increasing the number of random trials can make the results more stable and avoid obtaining 

different structures for the MST. (In many cases, the MST is not unique, and hence it is possible to 

search for different MSTs. The final total edge length can also be checked. As long as the total edge 

length after each optimization is nearly equal, the result is stable.) In theory, when more random 

trials are performed, it is more likely that the correct result (that is, the correct MST) will be obtained, 

and the result will be more stable. We generally randomly sow seeds i times the number of nodes n . 

For example, if the total number of nodes is n, the number of simulation times is sk = n × i, where 

i is some factor. 

3. Adjust the final flux of each edge 

In the PMA-MST algorithm, after nk simulation experiments, 𝑄𝑖𝑗
𝑚𝑒𝑎𝑛 = sij/nk. If the number of 

edges of the generated graph is less than n − 1, 𝑄𝑖𝑗
𝑚𝑒𝑎𝑛 is multiplied by amplification factor λ, that 

is, 

𝑄𝑖𝑗
𝑚𝑒𝑎𝑛=sij/nk•λ.                               (10) 

This is then rounded to obtain 𝑄𝑖𝑗
𝑒𝑛𝑑, where λ > 1. Because λ is greater than 1, it increases 

𝑄𝑖𝑗
𝑚𝑒𝑎𝑛. Hence, the probability that 𝑄𝑖𝑗

𝑚𝑒𝑎𝑛 is larger than 0 increases after rounding. As a result, the 

probability that edges are retained increases. For an edge to be retained, the algorithm that needs to 

be adjust is the original 𝑄𝑖𝑗
𝑒𝑛𝑑 =. We have 𝑄𝑖𝑗

𝑒𝑛𝑑 ≥ 1 for the edges that are retained 

 

After normalizing all edges in the above example and multiplying by amplification factor λ, 

the MST obtained by PMA-MST is shown in Fig. 11. The result indicates that all measures can 

improve the unconnected results caused by too few edges in the original algorithm. Moreover, the 

calculation result of the example is stable. 

 

Fig. 11 Edges of the network are normalized, and the amplification factor λ is used to search for 

the MST. The total number of edges of the MST is 9 and the total length of edges is 207. Prim’s 

method was also used to obtain the MST, and the results are the same. 

5.2 Influence of β on Clustering 

Parameter β is introduced in clustering to determine the grouping standard. For example, first, 

according to PMA-MST algorithm, the same tree is obtained, as shown in the Fig. 12. However, 

different values of β can result in different classification results. For instance, when β = 0, the nodes 

are divided into 10 clusters; when β = 0.5, 1, 2, and 3, the nodes are divided into eight clusters, five 

clusters, three clusters, and one cluster, respectively. 
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Fig. 12 MST of a network 

When β > 3, the result is almost exactly the MST, and the nodes are no longer classified. If is β 

larger, fewer edges are cut and fewer groups are used for division. When β is smaller, more edges 

are cut and more groups are used for division. 

5.3 Role of Acceleration Parameter α 

The original function of acceleration parameter α is to make the algorithm converge faster, but 

in practical application, it is found that this parameter can control the structure of the generated 

MST. Acceleration parameter α has the ability to control the output of the optimal path graph. 

For example, in the above example, there are 25 nodes, 114 edges, and the total edge length is 

5,958. The results obtained when α changes while other parameters are fixed are listed in Table 2. 

Further research into the role of α is a task for future work.  

Table 2 Results of different values of acceleration parameter α, which can control the structure 

with the most efficient path 

6. Application 

In this study, we consider the optimization of power grid: Fig. 13 shows the layout of 

transformer substations and power supply points, which consist of 16 power consumption points 

centered on townships and villages14. The aim is to optimize the regional power grid.  

 
14 https://www.docin.com/p-508584798 

α Optimized number 

of edges 

Optimized the total 

edges length 

a tree or not 

2 24 322 No 

5 24 319 Yes 

7 24 319 Yes 

10 19 172 No 
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a. Original power grid 

diagram  

 b. Optimized power grid 

diagram  

c. Partition of the power grid 

Fig. 13 Power grid optimization. The number on each edge indicates the distance, and α = 7, β 

= 1, and λ = 1. The total edge lengths of the network before and after optimization are 160.9 and 

54.2, respectively. The numbers of edges in the graph before and after optimization are 33 and 15, 

respectively, and the graph is divided into three clusters. 

The total edge length of MST in the original layout is 54.4, and the optimized result of PMA-

MST is 54.2. The structure is also different, which indicates that the proposed method is better than 

the original method. 

In the Iris dataset, there are 150 data samples that are divided into three categories, and each 

data contains four attributes. 15Sample data are as follows: 

Table 3 Sample from the Iris dataset 

Id 
Sepal Length  

Cm 

Sepal Width 

Cm 

Petal Length 

Cm 

Petal Width 

Cm 

1 5.1 3.5 1.4 0.2 

2 4.9 3 1.4 0.2 

…… …… …… …… …… 

150 5.9 3 5.1 5.9 

Because each sample is a row, there are 150 rows in total, that is, 150 samples. The four 

attributes are four columns, and hence the data form a 150×4 matrix. 

First, these data should be converted into a network. There are two ways to generated graphs: 

The first method uses Euclidean distance, that is, the distance between every two nodes (samples) 

is calculated by the following equation: 

𝑑𝑖,𝑗 = √(𝑥𝑖
1 − 𝑥𝑗

1)
2

+ (𝑥𝑖
2 − 𝑥𝑗

2)
2

+ (𝑥𝑖
3 − 𝑥𝑗

3)
2

+ (𝑥𝑖
4 − 𝑥𝑗

4)
22

,              (11) 

where i,j represents the number of nodes and there are four attributes in total. As an example, the 

distance between sample 1 and sample 2 is 

𝑑1,2 = √(5.1 − 4.9)2 + (3.5 − 3)2 + (1.4 − 1.4)2 + (0.2 − 0.2)22
. 

Finally, a 150×150 matrix representing the distance between any two nodes is formed, with a total 

of 11,175 edges. 

The second method uses the correlation coefficient16, that is, 

 
15

 https://baike.baidu.com/item/IRIS/4061453. 
16 There are many definitions of correlation coefficient. The Pearson correlation coefficient is used in this paper, 

which is a statistical index designed by statistician Karl Pearson. It is a quantity used to study the degree of linear 

correlation between variables, which is generally represented by r, which ranges between −1 and 1. An r closer to 

0 indicates that the linear relationship is weaker. 
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𝑟 =
∑ (𝑥𝑖−�̅�)(𝑦𝑖−�̅�)𝑛

𝑖=1

√∑ (𝑥𝑖−�̅�)2𝑛
𝑖=1 ∙∑ (𝑦𝑖−�̅�)2𝑛

𝑖=1

 .                            (12) 

However, in the second method, a larger absolute value of r indicates a greater similarity 

between two samples (vectors), and a smaller value means the similarity between two samples 

(vectors) is smaller. Therefore, after calculating r, we take the reciprocal of r cij=1/rij, and obtain a 

matrix C of 150×150 as the weight ("distance") between each node in the network. 

     The above two methods generate edges between any two nodes of the 150 samples in the Iris 

dataset, which is a complete graph17. There are hence 𝐶150
2 = 11,175 edges. 

Table 4  Result of clustering 

 Method 1, Lij=dij Method 2, Lij= cij 

Parameter α=10，β=2.2，λ=1 α=10，β=2.2，λ=1 

Clustering results 8 3 

     In this example, eight network classes are formed using distance and three are formed when 

the correlation coefficient is used. The results of the correlation coefficient method seem to be closer 

to the classifications of biologists. However, different applications may yield different results. We 

believe that clustering is subjective, and its rationality should be evaluated when different answers 

are produced. 

7. Conclusion 

In this paper, a stochastic method was introduced into the PM algorithm of P. polycephalum 

and the PMA-MST algorithm was proposed. The PMA-MST algorithm was constructed to simulate 

the intelligent foraging behavior of P. polycephalum in a multi-source food environment. This 

algorithm can determine the MST of a network. In addition, to increase the applicability and 

efficiency of the algorithm, the PMA-MST algorithm includes acceleration coefficient α and 

amplification coefficient λ. These parameters accelerate the computational efficiency of the 

algorithm and facilitate the search for the MST. Given the MST, a threshold value is set according 

to the mean and standard deviation of the edge lengths, and edges exceeding this threshold value in 

the MST are removed to obtain a forest for clustering. The results of examples in this paper show 

that the proposed PMA-MST algorithm is an effective solution for searching for the MST and 

performing clustering. Because of the randomness embedded in the algorithm, its uncertainty leads 

to natural parallel characteristics of the algorithm, which is beneficial for improving the efficiency 

of the algorithm and determining the globally optimal solution. The algorithm was demonstrated to 

be better than the network in an original paper on power grid optimization. Moreover, the results on 

the test dataset proves that the data can be clustered reasonably. 

In this paper, the generation process of swarm intelligence was explored based on 

computational principles. The extraordinary phenomena in nature continue to provide inspiration 

for the generation of intelligence, for which we are grateful.  

 

 

 

 
17

A complete graph is a simple undirected graph in which every pair of different vertices is connected by an edge.  
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