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An Multidimensional Improved Particle Swarm Algorithm 

and its Application in Nucleic Acid Test(NAT) Arrangement 
Tang Zhenming 

 
Abstract Particle Swarm Algorithm is an available global search algorithm 

influenced by the behavior of birds seeking food. It shows rapid speed in optimization 

and optima searching. However, the limitation of the standard form is obvious as 

well— because of the small inertia factor and personal learning factor which were set 

at very beginning, the particles may cannot search very widely and easily fall into 

local optima. The solution to this problem is the main purpose of this article. This 

paper presents improvement of PSO by changing the inertia factor, personal learning 

factor and social learning factor through the searching process and combining 

Simulated Annealing Algorithm. Then it presents an application of the improved PSO 

algorithm—— Optimization of the scheduling of nucleic acid specimen collection 

vehicles in the context of the COVID-19 epidemic. 

 

Keywords: Particle Swarm Algorithm, Descent Method, Simulated Annealing 

Algorithm, Cauchy Mutation, ANOVA, Convergence Analysis, Optimization 

Solution 
 

I. Introduction 

In 1995, American social psychologist J. Kennedy and electrical engineer R. Eberhart 

firstly proposed Particle Swarm Algorithm.[1] The Particle Swarm Optimization (PSO) 

is an evolutionary algorithm which has shown great performance in optimization 

searching[2] . Unlike other evolutionary algorithm, it uses fewer parameters and easy to 

achieve the goal, which specially motivated the simulation of social behavior that 

enabled it to get faster convergence velocity to the target point (game best point). Due 

to its advantages, the PSO is increasingly used in neural network training[3], pattern 

classification[4] and other fields. 
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Like other nature-based algorithm such as Ant colony Optimization[5], it starts with 

a limited population index and randomly generated solutions called particles and each 

particle has a certain position and velocity calculated by Eqs(1-1) and (1-2) in order to 

seek the game best position[6]. In the earliest version of PSO which J. Kennedy and R. 

Eberhart proposed in 1995, the Eqs(1-1) and (1-2) were presented as: 

																	𝑣!" = 𝑣!" + 𝑐#𝑟𝑎𝑛𝑑#"*𝑝𝑏𝑒𝑠𝑡!" − 𝑥!"2 + 𝑐$𝑟𝑎𝑛𝑑$"*𝑔𝑏𝑒𝑠𝑡" − 𝑥!"2	    (1-1) 

																																																																			𝑥!" = 𝑥!" + 𝑣!" 	                       (1-2) 

 
Figure(1-1) Particle swarm algorithm illustration 

where all superscript 𝑑 means the dth dimension, 𝑣!" and 𝑥!" are the velocity and 

position of the ith particle; 𝑐# and 𝑐$ are the personal learning factor and social 

learning factor; 𝑝𝑏𝑒𝑠𝑡!" and 𝑔𝑏𝑒𝑠𝑡" are the best position of the point that the ith 

particle has found so far and the position of the point that all particles has found so far 

respectively; 𝑟𝑎𝑛𝑑#" and 𝑟𝑎𝑛𝑑$" are two random numbers above 0 and this paper 

will present their improvement way later. 
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  In the Eq(1-1), we can find that the inertia factor 𝜔 has not been proposed yet. 

The earliest one is able to find the optima successfully without doubt, but it may 

probably fall into local optima though because the Eq(1-1) lessen the particles’ “self-

conscious” and are more likely to iterate to the game best point at the beginning while 

the real game best point probably does not appear towards that direction. 

 

  Therefore, Y. Shi and R. Eberhart proposed inertia factor 𝜔 in 1997.[7] They 

improved Eq(1-1) to Eq(1-1′): 

𝑣!" = 𝜔𝑣!" + 𝑐#𝑟𝑎𝑛𝑑#"*𝑝𝑏𝑒𝑠𝑡!" − 𝑥!"2 + 𝑐$𝑟𝑎𝑛𝑑$"*𝑔𝑏𝑒𝑠𝑡" − 𝑥!"2	(1 − 1′) 

 
Figure(1-1’) Particle swarm algorithm illustration (with inertia factor 𝜔) 

where 𝜔 is the inertia factor and usually a constant number. Compared with Eq(1-1), 

it avoids the circumstance above to some extent, but according to adequate simulation, 

the possibility of the particles fall into local optima is located at a relatively high level 

still. Its essential reason is that the particles cannot search as much area as possible if 

𝜔 is too small or convergence speed will be too low while 𝜔 is much higher. 
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Nowadays, PSO also has good process in some practical application fields such as 

Power Systems[8] and Synthetic Molecules[9]. First, the researchers of Fuji Electric 

Power Co., Ltd. turn the Reactive Power and Voltage Control (RPVC) into function 

optimization problem using PSO to solve. Second, neural network training combining 

PSO with Back Propagation (BP) has been used to simulate the charging of electric 

vehicle fuel cell stacks. Its simulation accuracy is much higher than which Eberhart, 

Simpson and Dobbins proposed in 1996, according to the experiment data. Last but not 

least, PSO has been used by a biological company in the United States to optimize the 

combination of various biochemical components, and then artificially synthesize 

microorganisms.[10] It can be seen that PSO and its improved ones has been used in 

many disciplines other than computer science and mathematics, making great 

contribution to solving problems in practical scenarios. Additionally, PSO is also very 

helpful for us to solve life problems: Li Ning[11] applies PSO to vehicle path planning 

problem, Qi Xuemei[12] used PSO to solve the flow shop scheduling problem, etc. 

Similarly, we can apply PSO to the NAT arrangement in order to improve the speed and 

efficiency of nucleic acid detection to help fight the epidemic. 

 

  To better standard PSO, Section II shows the methodology which motivates a variety 

of decreasing strategies of 𝜔 and 𝑐# to improve its search space and convergence 

speed and combine it with Simulated Annealing Algorithm (SAA) and Cauchy mutation. 

In section III, variance analysis and convergence analysis will be done on the 

parameters and the improved algorithm which this paper will bring up later respectively 

in order to analyze theoretically. In Section IV the improved algorithm will be used in 

order to optimize the scheduling of nucleic acid specimen collection vehicles in 

Chenghua District, Chengdu, China against the global backdrop of COVID-19. 

 

II. Methodology 
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This section improves the standard PSO by adding decreasing strategy of 

parameters 𝜔 and 𝑐#, then combining with SAA and Cauchy mutation in order to 

speed up convergence and prevent struggling in a local optima. The first part of this 

section there will discuss five kinds of decreasing methodology and pick out one 

methods with the best overall performance and enter the second part of the discussion 

on the SAA and Cauchy mutation. 

 

2-1  Descent Methods  

  The goal of the decreasing strategy is to make particles search more area at the 

early stage of the searching process and increase the convergence velocity at the late 

stage. Generally, there are two main kinds of descent method: linear ones and 

nonlinear ones. Now there proposes five kinds of methods. In the following formula, 

𝜔!, 𝜔", 𝜔# are the index of inertia factor at the start, after the ith iteration and at 

the end respectively (The expression of 𝑐# is the same); 𝜑 = 𝑐# + 𝑐$. 

 

First, there is the only linear one among them[13]: 

Method 1: 

𝜔" = 𝜔! −
𝜔! − 𝜔#

𝑘
𝑖 

𝑐$" = 𝑐$! −
𝑐$! − 𝑐$#

𝑘
𝑖 

The connection of 𝜔% and 𝜔&, 𝑐% and 𝑐& is a linear function with slope equals to 

−%!&%"
#

 and − '#!&'#"
#

 respectively. We refer to this method Lin in the following 

discussion. 

 

Then there are four kinds of nonlinear kinds: 

Method 2: 

𝜔" = −(𝜔! − 𝜔#) )
𝑖

100
,
(
+ 𝜔! 
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𝑐$" = −(𝑐$! − 𝑐$#) )
𝑖

100
,
(
+ 𝑐$! 

Method 3: 

𝜔" = (𝜔! − 𝜔#) )
𝑖

100
,
(
+ (𝜔# − 𝜔!) )

2𝑖
𝑘
, + 𝜔! 

𝑐$" = (𝑐$! − 𝑐$#) )
𝑖

100
,
(
+ (𝑐$# − 𝑐$!) )

2𝑖
𝑘
, + 𝑐$! 

these two functions[13] are both quadratic while the first one is convex and the other 

one is concave. The convex one and the concave one are named Convex and 

Concave respectively. 

 

Method 4: 

𝜔" = 𝜔! −
𝜔! − 𝜔#
𝑘 − 𝑖

(𝑖 ≤ 𝑘 − 1) 

𝑐$" = 𝑐$! −
𝑐$! − 𝑐$#
𝑘 − 𝑖

 

whose figure likes an inversed inverse proportional function and we will call it I-

Inverse. 

 

Method 5: 

𝜔 =
2

|2 − φ − 𝜑
( − 4𝜑
2 |

 

 
The above-mentioned PSO with contraction factor was proposed in order to improve 

the searching ability of the algorithm. [14] Because the method was proposed by Clerc 

and Kennedy, there is no harm in calling it CK. 

 

Figure(2-1-1) shows the curves of decreasing strategy function with the increase of 

iteration in five kinds of methods. 
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 8 

 
Figure (2-1-1) the curves of decreasing strategy function with the increase of iteration in five kinds of methods 

 

2-2 Simulated Annealing Algorithm 

An obvious difference between PSO and SAA is that SAA will probably accept a 

point that is not the actual personal best point so far as a new personal best point. This 

allows points to get rid of the local optima then search wider area. 

 

As SAA has probability to accept a point that is not a personal best point, there will 

be a function to express this probability. In 1953, M. Carlo proposed Metropolis 

criterion shown as(suppose the goal is to search the minimum) 

																																																𝑃 = ;𝑒
∆"
#$, 𝑓(𝑥#) > 𝑓(𝑥%)
1, 𝑓(𝑥#) ≤ 𝑓(𝑥%)		

                  (2-2-1) 

																																																												𝑇! = 𝑇!'# × 𝑑𝑇                      (2-2-2) 

where ∆𝑓 is −|𝑓(𝑥#) > 𝑓(𝑥%)|, a negative real number; 𝑇 and 𝑑𝑇 are the 

current annealing temperature and the decreasing rate of 𝑇 respectively and 𝑘 is 

Boltzmann parameter, which equals to 1 in the algorithm. 
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In SAA, 𝑇 and 𝑑𝑇 are the parameters that mainly affect the performance of the 

algorithm. If the value 𝑇 is large and 𝑑𝑇 is small, the particles’ moving range will 

be wide and if not it will be narrow. 

 

2-3 Cauchy Mutation 

  Through previous dynamic image and theoretical results[15] that the particles in 

PSO will oscillate between their previous personal best point and the game best point 

so far before it converges. If one can apply a mutation to some particles when they 

enter an optima, it will extend searching area thus get rid of the local optima and 

increase success rate. This can be accomplished by having Cauchy Mutation on the 

particles in every generation.[16] The one-dimensional Cauchy density function 

centered at the origin is defined by: 

																																																				𝑝(𝑥) = #
(

)
)%*+%

	(𝑥 ∈ (−∞,+∞))             (2-3-1) 

where 𝑡 > 0 and it equals to 1 in this paper. The Cauchy distributed function is: 

																																																	𝐹(𝑥) = ∫ 𝑝(𝑥)+
', = #

(
arctan(𝑥) + #

$
            (2-3-2) 

Then with Eq(4-2), it is able to apply Cauchy mutation to the present game best point 

according to Eq(4-3) 

																																																	𝑥!()*#)
" = 𝑥!)" × (𝑛𝜂 ∙ 𝐹*𝑟𝑎𝑛𝑑(𝑥)2 + 1)																							(2-3-3) 

and 

𝑛 =
𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛	𝑡𝑖𝑚𝑒𝑠 − 𝐶𝑢𝑟𝑟𝑒𝑛𝑡	𝑖𝑛𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛	𝑡𝑖𝑚𝑒𝑠

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛	𝑡𝑖𝑚𝑒𝑠  

𝜂 > 0 

where 𝑥!)"  and is the location of the ith particle after t iteration times at the dth 

dimension; 𝜂 is a positive parameter to increase or decrease the particles’ jump 

length depending on the function; 𝑛 is a parameter that modify convergence speed of 

early stage and lately stage; 𝐹(𝑥) is Cauchy distributed function and 𝑟𝑎𝑛𝑑(𝑥) is a 

random number belongs to (−∞,+∞).[17][18] 

The pseudocode below shows the pseudocode of the entire process of the improved 

PSO of this paper, which combine decreasing strategy, SAA and Cauchy mutation. 
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Begin 
  𝑁 = 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	𝑠𝑖𝑧𝑒 
  𝑑 = 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 
  𝑖𝑡𝑒𝑟 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛	𝑡𝑖𝑚𝑒 
  𝑔𝑒𝑟 = 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛	𝑡𝑖𝑚𝑒𝑠 
  𝑙𝑖𝑚𝑖𝑡[ ] = 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛	𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑠 
  𝑣𝑙𝑖𝑚𝑖𝑡[ ] = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦	𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑠 
  𝑥𝑚 = 𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙	ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙	𝑏𝑒𝑠𝑡	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛	(𝑝𝑏𝑒𝑠𝑡) 
  𝑓𝑥𝑚 = 𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙	ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙	𝑏𝑒𝑠𝑡	𝑓𝑖𝑡𝑛𝑒𝑠𝑠 
  𝑦𝑚 = 𝑔𝑎𝑚𝑒	ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙	𝑏𝑒𝑠𝑡	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛	(𝑔𝑏𝑒𝑠𝑡) 
  𝑓𝑦𝑚 = 𝑔𝑎𝑚𝑒	ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙	𝑏𝑒𝑠𝑡	𝑓𝑖𝑡𝑛𝑒𝑠𝑠 
  𝑇 = 𝑎𝑛𝑛𝑒𝑎𝑙𝑖𝑛𝑔	𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 
  𝑑𝑇 = 𝑎𝑛𝑛𝑒𝑎𝑙𝑖𝑛𝑔	𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒	𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 
   
 
  𝒘𝒉𝒊𝒍𝒆(𝑖𝑡𝑒𝑟 < 𝑔𝑒𝑟) 
  𝑈𝑝𝑑𝑎𝑡𝑒	𝑡ℎ𝑒	𝑣𝑎𝑙𝑢𝑒	𝑜𝑓	𝜔	𝑎𝑛𝑑	𝑐#	𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔	𝑡𝑜	𝑚𝑒𝑡ℎ𝑜𝑑	𝑪𝑲 
  𝑈𝑝𝑑𝑎𝑡𝑒	𝑡ℎ𝑒	𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦	𝑎	𝑜𝑓	𝑒𝑎𝑐ℎ	𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒	𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔	𝑡𝑜	𝐸𝑞(1 − 1/)	   
    𝒊𝒇	(𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 > 𝑣𝑙𝑖𝑚𝑖𝑡	𝑜𝑟	𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 < 𝑣𝑙𝑖𝑚𝑖𝑡) 
    𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 𝑣𝑙𝑖𝑚𝑖𝑡 
    𝒊𝒇	𝑒𝑛𝑑 

 𝑈𝑝𝑑𝑎𝑡𝑒	𝑡ℎ𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠	𝑜𝑓	𝑒𝑎𝑐ℎ	𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒	𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔	𝑡𝑜	𝐸𝑞(1 − 2) 
									𝒊𝒇	(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 > 𝑙𝑖𝑚𝑖𝑡	𝑜𝑟	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 < 𝑙𝑖𝑚𝑖𝑡) 
    𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑙𝑖𝑚𝑖𝑡 
    𝒊𝒇	𝑒𝑛𝑑 
  𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒	𝑡ℎ𝑒	𝑓𝑖𝑡𝑛𝑒𝑠𝑠	𝑣𝑎𝑙𝑢𝑒 
    𝒇𝒐𝒓	𝑖 = 1:𝑁 
      𝑈𝑝𝑑𝑎𝑡𝑒	𝑥𝑚	𝑎𝑛𝑑	𝑓𝑥𝑚	𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔	𝑡𝑜	𝑆𝐴𝐴 
    𝒇𝒐𝒓	𝑒𝑛𝑑 
  𝑈𝑝𝑑𝑎𝑡𝑒	𝑦𝑚	𝑎𝑛𝑑	𝑓𝑦𝑚	𝑖𝑓	𝑛𝑒𝑒𝑑𝑒𝑑 
  𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒	𝐶𝑎𝑢𝑐ℎ𝑦	𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝑖𝑛𝑑𝑒𝑥 
  𝐴𝑑𝑑	𝐶𝑎𝑢𝑐ℎ𝑦	𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝑡𝑜	𝑡ℎ𝑒	𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠	𝑡𝑜	𝐸𝑞(4 − 3) 
								𝒊𝒇	(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 > 𝑙𝑖𝑚𝑖𝑡	𝑜𝑟	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 < 𝑙𝑖𝑚𝑖𝑡) 
    𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑙𝑖𝑚𝑖𝑡 
    𝒊𝒇	𝑒𝑛𝑑 

   𝑈𝑝𝑑𝑎𝑡𝑒	𝑓𝑥𝑚	𝑖𝑓	𝑡ℎ𝑒	𝑝𝑎𝑡𝑖𝑐𝑙𝑒!𝑠𝑓𝑖𝑡𝑛𝑒𝑠𝑠	𝑣𝑎𝑙𝑢𝑒 < 	𝑓𝑦𝑚.𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑈𝑝𝑑𝑎𝑡𝑒	𝑓𝑥𝑚	𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔	𝑡𝑜	𝑆𝐴𝐴 

  𝑈𝑝𝑑𝑎𝑡𝑒	𝑓𝑦𝑚	𝑖𝑓	𝑛𝑒𝑒𝑑𝑒𝑑 
  𝑇 = 𝑇 × 𝑑𝑇 
  𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1 

  𝒘𝒉𝒊𝒍𝒆	𝒆𝒏𝒅 
𝑬𝒏𝒅 
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 11 

  From chapter 2-1 to 2-3, it shows the entire improved algorithm process of PSO 

that this paper intend to propose. Because it includes descent method of 𝜔 and 𝑐#, 

SAA and Cauchy mutation, the improved PSO is named DSCPSO in coming 

discussions. 

 

2-4 Illustrations 

2-4-1 Descent Method 

  Set 𝑐#% = 𝑐$ = 0.8, 𝜔% = 0.9	and	𝑘 = 100; 	for	𝐋𝐢𝐧	to	𝐂𝐨𝐧𝐜𝐚𝐯𝐞		𝑐#& = 𝜔& = 0.4, 

and the decreasing strategy of 𝜔 and 𝑐# in CK is the one in LIN by default. 

In order to examine the performances of five methods, four kinds of classic test 

functions shown in Table(2-4-1-1) are used and their figures in 2-dimension are 

shown in figure(2-4-1-2) 

FUNCTION 

NAME 

FUNCTION DIMENSION SEARCHING 

SPACE 

MAX 

SPEED 

BREAK 

CONDITION 

SPHERE 
𝑓1 =�𝑥!$

"

!0#

 
10 (−10,10)" 0.5 0.001 

STEP 
𝑓2 =�|𝑥! + 0.5|$

"

!0#

 
10 (−10,10)" 0.5 0.001 

GRIEWANK 𝑓3 =
1

4000
'𝑥!" −*cos .

𝑥!
√𝑖
1

#

!$%

#

!$%

+ 1 

10 (−10,10)" 0.5 0.1 

RASTRIGRIN 𝑓4 ='[𝑥!" − 10 cos(2𝜋𝑥!) + 10]
#

!$%

 10 (−10,10)" 0.5 / 

Table(2-4-1-1) the four classic test functions for convergence speed examination 仅
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 12 

 

 
Figure(2-4-1-2) the figures of the test function(From top left to bottom right: Sphere, Step, Griewank and 

Rastrigrin) 

whose minimum are all 0 when all the elements equal to 0. And it is not hard to find 

that Sphere and Step are unimodal functions and Griewank and Rastrigrin are multi -

6modal functions. Set 𝑁 = 100, 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦	𝑙𝑖𝑚𝑖𝑡 ∈ [−10,10] (if the velocity index is 

above 10 or below -10, then the index equals to 10 or -10 compulsively). There will 

test the convergence speed of LIN to CK(including the standard one), the test 

standard is that total the iteration times while the result is below to 0.001 for Sphere 

and Step and 0.1 for Griewank (because the span of Griewank on z-axis is much 

smaller than Sphere and Step, therefore it is harder for Griewank to converge to a 

enough accurate small value) and for 1000 times and calculate the average of each 

method(if one result cannot converge below to 0.001 or 0.1 after 1000 iteration 

times, add 1000 to the total). Specially, because Rastrigrin is quite difficult to 

converge to a value that small enough, therefore there calculates the average of the 

final converged valve(after 200 iteration times) of each Method. 

-2.5
20

-2

-1.5

10

-1

-0.5

0

0

-10 20151050-5-20 -10-15-20
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 13 

  Table(2-4-1-3) to Table(2-4-1-6) show the test result of each method for each test 

function and Figure(2-4-1-3-1) to Figure(2-4-1-5-1) show the velocity of adaptability 

decreasing curves of each method.(Note: Due to the particularity of Rastrigrin, we 

can judge its convergence performance by variance. ) 

    

ALGORITHM STANDARD LIN I-INVERSE CONVEX CONCAVE CK 

TEST TIME 1000 1000 1000 1000 1000 1000 

AVERAGE ITERATION 

TIMES 

117.33 95.39 337.45 94.74 417.11 74.28 

VARIANCE WHEN 

CONVERGE BELOW 

TO 0.001 

7.6328

× 10'1 

8.7094

× 10'2 

2.502

× 10'3 

5.7115

× 10'1 

1.2063

× 10'## 

4.2056

× 10'2 

VARIANCE AFTER 1000 

ITERATION TIMES 

4.3593

× 10'3% 

1.0285

× 10'2$ 

8.6907

× 10'3$ 

4.1195

× 10'24 

1.3333

× 10'35 

8.4568

× 10'22 

Table(2-4-1-3) the running result of the average iteration times of each Method for Sphere 

 

 

Figure(2-4-1-3-1), the velocity of adaptability decreasing curves of each method within iteration times[0,20] for 

Sphere 

According to the table(2-4-3-1) and the Figure(2-4-3-1-1), CK has the fastest 

convergence speed, an average of about 74 iterations converged to the relatively ideal 

results and Convex and Lin are the second and the third, 95 times and 96 times 
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 14 

respectively. For the decreasing velocity, the standard one drops fastest; Lin, Convex, 

CK drop slower than the standard one and I-Inverse as well as Concave drops 

slowest. Moreover, the convergence accuracy of I-Inverse and Concave are not ideal, 

so that their average iteration times are increased. 

ALGORITHM STANDARD LIN I-INVERSE CONVEX CONCAVE CK 

TEST TIME 1000 1000 1000 1000 1000 1000 

AVERAGE 

ITERATION TIMES 

122.38 90.69 288.11 90.96 449.81 68.94 

VARIANCE WHEN 

CONVERGE BELOW 

TO 0.001 

5.4008

× 10'3 

1.7696

× 10'2 

9.3524

× 10'3 

2.1864

× 10'4 

3.0457

× 10'3 

9.3929

× 10'3 

VARIANCE AFTER 

1000 ITERATION 

TIMES 

1.935

× 10'67 

3.5156

× 10'23 

1.7889

× 10'3# 

5.0821

× 10'24 

77.9380 ×

10'37 

8.9944

× 10'23 

Table(2-4-1-4) the running result of the average iteration times of each Method for Step 

 
Figure(2-4-1-4-1), the velocity of adaptability decreasing curves of each method within iteration times [0,20] for 

Step 

According to the table(2-4-1-4) and figure(2-4-1-4-1), CK has the fastest 

convergence speed, an average of about 69 iterations converged to the relatively ideal 

results and Convex and Lin are the second and the third, about 90 times. For the 

decreasing velocity, Lin and Convex drop fastest at the early stage while CK drops 
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slowest in all 6 methods. However, the convergence effects of other methods are not 

ideal, so that their average iteration times are increased. 

 

ALGORITHM STANDARD LIN I-INVERSE CONVEX CONCAVE CK 

TEST TIME 1000 1000 1000 1000 1000 1000 

AVERAGE ITERATION 

TIMES 

137.76 166.42 100.97 150.06 137.17 95.94 

VARIANCE WHEN 

CONVERGE BELOW 

TO 0.1 

9.988

× 10'$ 

8.8888

× 10'$ 

9.7919

× 10'$ 

7.5295

× 10'$ 

7.9835

× 10'$ 

7.1895

× 10'$ 

VARIANCE AFTER 

1000 ITERATION 

TIMES 

9.2965

× 10'66 

7.0393

× 10'66 

7.0187

× 10'66 

7.0562

× 10'66 

9.8642

× 10'66 

9.9803

× 10'63 

Table(2-4-1-5) the running result of the average iteration times of each Method for Griewank 

 
Figure(2-4-1-5-1) he velocity of adaptability decreasing curves of each method within iteration times for 

Griewank 

According to the table(2-4-1-5) and figure(2-4-1-5-1), CK has the fastest 

convergence speed, an average of about 96 iterations converged to the relatively ideal 

results and I-Inverse and Concave are the second and the third, 101 times and 137 

times respectively. For the decreasing velocity, Convex drops very fast at the early 

stage but become much slower at the middle and late stage, thus slow down its 
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convergence speed. Concave drops slowest at the early stage while drops fastest at 

the late stage so that it has a faster convergence speed. 

ALGORITHM STANDARD LIN I-INVERSE CONVEX CONCAVE CK 

TEST TIME 1000 1000 1000 1000 1000 1000 

AVERAGE FINAL 

CONVERGED VALUE 

20.9983 23.1234 20.6139 22.3150 23.7780 22.3574 

VARIANCE 167.97 8.837 × 10!"# 49.2879 2.0735 × 10!"" 1.3947 × 10!"$ 8.5032 × 10!%& 

Table(2-4-1-6) the running result of the average iteration times of each Method for Rastrigrin 

According to table(2-4-1-6), I-Inverse and the standard one plays best which could 

converge to about 20.61 and 21 after 200 iteration times respectively, while Concave 

and Lin plays worst which could only converge to about 24 and 23 respectively. Note 

that the variance of I-Inverse and the standard one are quite big while Concave and 

Lin’s are quite small, which indicates that Concave and Lin are easy to fall into a 

local optima. I-Inverse and the standard one have better global searching ability that 

not easily disturbed by local optima. 

 

  In conclusion, CK runs best in unimodal functions as well as multimodal functions 

and Convex and Lin follow it, CK and I-Inverse run well in multimodal functions 

especially in Griewank. As for the variances, Convex and CK have better 

convergence speed in unimodal functions but in multimodal functions the differences 

between 4 test functions are not very significant, while Convex and CK are a little bit 

better, comparing with other 4 methods.  

Take all the test data into consideration, this paper will take CK into coming 

research.  

 

2-4-2 Simulated Annealing Algorithm 

Set 𝑇 = 2000 and 𝑑𝑇 = 0.98, the location and velocity of the particles abide by 

Eq(1-2) and Eq(1-1’) as well. Table(2-10) lists the average convergence speed of 
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Convex and CK after combined with SAA. Figure(2-9) and Figure(2-10) show the 

running results of horizontal and vertical comparisons 

CK SPHERE STEP GRIEWANK RASTRIGRIN 

AVERAGE FINAL 

CONVERGED VALUE 

79.45 80.63 32.14 15.8550 

VARIANCE WHEN 

CONVERGE BELOW TO 

0.001 OR 0.1 

2.3912

× 10'5 

2.6771

× 10'5 

5.7116

× 10'$ 

/ 

VARIANCE AFTER 

1000(200) ITERATION 

TIMES 

8.3805

× 10'52 

1.5491

× 10'56 

9.8326

× 10'63 

1.4409 × 10'## 

Table(2-4-2-1) the running condition of CK after combined with SAA 

 

Figure(2-4-2-1-1) the running result of the average iteration times of CK with SAA for the test function 

0 10 20 30 40 50 60 70 80 90
Iteration times

0

50

100

150

ad
ap

ta
bi

lit
y

Sphere
Step
Griewank

仅
用
于

20
22
丘
成
桐
中
学
科
学
奖
公
示

20
22

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

s



 18 

 

Figure(2-4-2-1-2) the running result of the average iteration times of CK with and without SAA for the test 

function 

 

  According to the Table(2-4-2-1) and Figure(2-4-2-1-1), Figure(2-4-2-1-2), there is 

significant improvement in multimodal functions, but shown in Figure(2-4-2-1-2), the 

convergence speed of Griewank becomes even slower. This indicates SAA does not 

converge as fast as before in the early stage but ensures the success rate or 

convergence accuracy of the multimodal functions in some ways. Through the close 

to 1, which says its success rate is guaranteed.  

 

2-4-3 Cauchy Mutation 

To study the performance of the Cauchy mutation, we start with confirming the 

value of variable 𝜂 in four test functions by comparing the average number of 

iterations, variance when converge to the success standard, final variance and 

convergence speed with each other. Because of too much data and figures, for 

detailed experimental data, please refer to Appendix 1. 

 
From the diagrams, we can draw the following conclusions: 

1. For the unimodal functions, the average iteration times decrease and average 

variances increase with the increase of 𝜂 generally. 

2. For the final variances of the unimodal functions, their levels keep low when 𝜂 
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equals to 1 to 6 approximately and they surge when 𝜂 is greater than 7. 

3. For Griewank, the change of 𝜂 has little effect on the increase or decrease of 

the average iteration times and the average variances and their levels keep low. 

4. For Rastrigrin, the minimum value that the particles searched and average 

variances after 200 iteration times increase with the increase of 𝜂 in general, 

but their curves fluctuate more significant than the unimodal ones. 

5. The change of 𝜂 has little effect on the convergence speed whether in unimodal 

functions and multimodal functions. 

6. Specially, the adaptability of Griewank will slump at about 15 to 35 iteration 

times. 

7. For the iteration times of the unimodal functions, comparing with the algorithm 

in 2-4-2, they can converge to certain precision(0.001) with fewer iteration 

times when 𝜂 is greater than about 10. 

8. For the unimodal functions, the staged variances (when converge below 0.001) 

are much higher than the algorithm in 2-2. For Sphere, the final variances is 

lower than 2-4-2 when 𝜂 is at about 1 to 5. However, as for Step the final 

variances are much higher than 2-2 regardless the value of 𝜂. 

9. For Griewank, the iteration times and the variances are basically equal to the 

algorithm in 2-4-2 regardless the value of 𝜂. 

10. For Rastrigrin, the iteration times are basically equal to the 2-2 when 𝜂 equals 

about 1 to 11, and it keeps going higher when 𝜂 is bigger. And its variances is 

much bigger than 2-4-2 regardless the value of 𝜂. 

In conclusion, for different values of 𝜂, Cauchy mutation gives different degrees of 

optimization or regression for unimodal and multimodal functions, comparing with 

one in 2-4-2 and standard PSO. The selection of the value of 𝜂 ought to be 

determined according to the specific situation, but in general, Cauchy mutation has an 

optimization effect on the entire algorithm. 

 

III. Theoretical Analysis of the Algorithm 
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Compared with other swarm intelligence algorithms, PSO has more concise 

features. Meanwhile, the performance of PSO also depends on the parameter 

setting.[19] Better parameter setting can greatly improve the convergence success rate 

of PSO, so as to avoid falling into local optima and stagnation as much as possible. 

 

In order to prove the importance of the parameters for PSO, in the first part of this 

section the influence of three parameters on the performance of the algorithm will be 

introduced. In the second part ANOVA will be conducted to judge whether the 

changes of each parameters has a significant impact on the performance of DSCPSO. 

In the last part of this section, convergence analysis of DSCPSO proposed in Section 

II will be performed to show that the proposed algorithm is globally convergent. 

 

3-1 Parametric Influence 

The parameters of PSO mainly include speed range, individual learning factor(𝑐1), 

group learning factor(𝑐2), inertia factor(𝜔) or contraction factor(𝜑), etc. The 

settings of different parameters have different effects and influences on the algorithm. 

(1)The settings of speed range. Eq(1-1’) contains random variables, that cause 

position update Eq(1-2) numerically uncontrollable. In order to limit this irregular 

beating, we introduce a speed range [−𝑣89+ , 𝑣89+] to limit the speed of its beating. 

If 𝑣89+ is larger, it is more conducive to the global search, but it is easy to jump over 

the optimal solution and become stagnant. Similarly, if 𝑣89+ is smaller, it is more 

conducive to local search, but because the jump is too small, it is easy to fall into local 

optima.[20][21] The value of 𝑣89+ is mainly determined by empirically adjusting the 

parameters, and some paper points out that 𝑣 is generally set to 10%~20% of the 

problem space.[20] 

 

(2)The settings of learning factors. The learning factors 𝑐1 and 𝑐2 are used to 

control the movement of the particles to the personal best position  (𝑝𝑏𝑒𝑠𝑡) and 

game best position (𝑔𝑏𝑒𝑠𝑡). Similar with the settings of speed range, If 𝑐1 is large, 
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it is more conducive to the global search, but it will slow down the convergence 

speed. If 𝑐2 is large, it is more conducive to accelerate the convergence speed, but it 

will be easier to lead the particles fall into local optima. For their respective 

disadvantages, Researchers have proposed linear decreasing or increasing strategies 

(similar with Lin mentioned in Section II) and strategies to increase population 

diversity, which have solved the above problems to the greatest extent. 

 

(3) inertia factor and contraction factor. As introduced in Section I, researchers 

proposed inertia factor to optimize PSO. Some paper suggests that the inertia factor 

should decrease linearly from 0.9 to 0.4.[22] Dos Santos et al. adopted the stochastic 

approximation theory and proposed a strategy in which the inertia factor decreases to 

0 with the time of iterations. PSO with contraction factor was proposed by Kennedy 

and Clerc[14], its basic form is 

																				𝑣!:𝑡 = 𝑥𝑣!:𝑡 − 1 + 𝑐1𝑟1*𝑝!: − 𝑥!:𝑡2 + 𝑐2𝑟2(𝑡)(𝑝!: − 𝑥!:𝑡)    (3-1-1) 

where 𝑥 = $
|$'<'=>%'3>|

, 𝜑 = 𝑐1 + 𝑐2. 

The method CK mentioned in Section II is a simplified version of it, avoiding 

imaginary number due to small 𝑐1 and 𝑐2 and directly regard 𝑥	as the 𝜔 

according to the Eq(1-1’). According to the experiment in the Section II, it is proved 

that its simplified version is also effective for algorithm optimization.  

 

Although the PSO with inertia factor and contraction factor has its own advantages, 

because the PSO with inertia factor often adopts a decreasing strategy, the inertia 

weight is too small in the later stage, and part of the global search ability is lost, while 

the PSO with contraction factor there is no such deficiency.[23] 

 

 3-2 ANOVA 

  ANOVA is used to deal with the comparison of multiple population means and is 

one of the important methods in statistical analysis. This method can be used to 

analyze the differences in the influence of different levels of the same parameter or 
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the various levels of different parameters on the performance of the algorithm, so as 

to explore the potential relationship between different parameter setting ranges and 

the algorithm system. 

 

  One-way ANOVA is to analyze the influence of a factor on the whole experiment 

by observing the change of a factor. In this paper, the same number of experiments 

was used to conduct ANOVA. In order to analyze the influence of each of 𝜔, 𝑐1 

and 𝑐2 on the algorithm, 3 separate ANOVAs will be performed here and conduct 6 

levels per group (0.3,0.6,0.9,1.2,1.5,1.8. When one parameter is analyzed by 

ANOVA, the other two parameters are taken as 0.9) and do 5 experiments per level. 

 

  For convenience of marking, suppose the factor of 𝜔, 𝑐1 and 𝑐2 are 𝐴, 𝐵, 𝐶 

respectively. Take factor 𝐴 as the example (𝐵 and 𝐶 are same with 𝐴). Let 𝐴 has 

𝑚 levels, do 𝑘 experiments per level, then a fitness value can be obtained after each 

experiment, which denoted as 𝑥!:, where 𝑖 = 1,2,3, … ,𝑚 and 𝑗 = 1,2,3, … , 𝑘. 

When analyzing the influence of the change of factor 𝐴 on the algorithm, the 𝑚 

levels of 𝐴 (𝐴#, 𝐴$, … , 𝐴8) are regarded as 𝑚 normal populations. Therefore it can 

be assumed 𝑋!:~𝑁(𝜇! , 𝜎$), 𝑖 = 1,2,3, … ,𝑚, 𝑗 = 1,2,3, … , 𝑘 and 𝜇! = 𝜇 + 𝑎!, 

where 𝜇 is the total mean and 𝑎! is the main effect due to the ith level 𝐴! of factor 

𝐴, which means if to test whether there is a significant difference between the levels 

of 𝐴, test the following hypothesis: 

𝐻%: 𝜇# = 𝜇$ = ⋯ = 𝜇8 

Its alternative hypothesis is: 

𝐻#: 𝜇#, 𝜇$, … 𝑎𝑛𝑑	𝜇8	𝑎𝑟𝑒	𝑛𝑜𝑡	𝑎𝑙𝑙	𝑒𝑞𝑢𝑎𝑙 

If 𝐻% holds, the mean of each level of factor 𝐴 is the same, and there is no 

significant difference among 𝑚 levels of factor 𝐴. On the contrary, it is said that 

there is a significant difference between the 𝑚 levels of factor 𝐴. As can be seen 

from the above, there 𝑚 = 6, 𝑘 = 5. 
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(1) ANOVA for Factor 𝑨 

For function Sphere and Griewank, let 𝑐1 = 𝑐2 = 1.5;	𝜔# = 0.3, 𝜔$ = 0.6, 𝜔6 =

0.9, 𝜔3 = 1.2, 𝜔2 = 1.5, 𝜔5 = 1.8. The number of particles 𝑁 = 100, iteration times 

𝑔𝑒𝑟 = 100. Conduct one-way ANOVA, run program*, each experiment was 

required to repeat 5 times. The running results are shown in Table(3-5-1-1): 

 0.3 0.6 0.9 1.2 1.5 1.8 

1 0.022164 9.3625

× 10'7 

0.0012587 0.63355 1.4721 1.7076 

2 0.029767 1.5587

× 10'5 

0.0069404 0.6966 1.4317 2.4417 

3 0.011473 6.0527

× 10'#% 

0.0027286 0.58875 1.2007 1.1771 

4 0.0099417 2.0883

× 10'4 

0.0077735 0.30013 1.4022 1.1132 

5 0.015784 7.6303

× 10'4 

0.0038226 0.86972 1.1848 1.9424 

SAMPLE 

SUM 

0.01560954 1.6659

× 10'5 

0.0225238 3.08875 6.6915 8.3820 

SAMPLE 

MEAN 

0.03121908 3.3317

× 10'1 

0.00450476 0.61775 1.3383 1.6764 

Table(3-2-1-1) the running result of program* for Sphere 

According to table(3-5-1-1), it is able to calculate its total deviation sum of squares 

(𝑆?), error deviation sum of squares (𝑆@), factor deviation sum of squares *𝑆A(B)(C)2 

and their respective degree of freedom(𝑑𝑓). 

𝑆? =��*𝑥!: − 𝑥.� 2
$

&

:0#

8

!0#

= 14.907			𝑓? = 𝑚𝑘 − 1 = 29 

𝑆@ =��*𝑥!: − 𝑥D.��� 2
$

&

:0#

8

!0#

= 1.507			𝑓@ = 𝑚𝑘 −𝑚 = 24 
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𝑆A = 𝑘�(𝑥D.���− �̅�)$
8

!0#

= 13.4			𝑓A = 𝑚 − 1 = 5 

where total deviation sum of squares (𝑆?) is a data indicator that describes the 

degree of dispersion of the entire experiment results; error deviation sum of squares 

(𝑆@) reflects random fluctuations in samples within a group and factor deviation sum 

of squares *𝑆A(B)(C)2 reflects data differences caused by different effects (factors). 

Specially, There is a relationship between the 3 kinds of deviation sum of squares: 

																																																																𝑆? = 𝑆A + 𝑆@                          (3-1) 

Proof: 

Note that 

��*𝑥!: − 𝑥D.��� 2
&

:0#

8

!0#

(𝑥D.���− �̅�) =�[((𝑥D.���− �̅�))�*𝑥!: − 𝑥D.��� 2
&

:0#

]
8

!0#

= 0 

Therefore 

𝑆? =��*𝑥!: − 𝑥.� 2
$

&

:0#

8

!0#

=��[*𝑥!: − 𝑥D.��� 2
&

:0#

+
8

!0#

(𝑥D.���− �̅�)]$

= 𝑆@ + 𝑆A + 2��*𝑥!: − 𝑥D.��� 2
&

:0#

8

!0#

(𝑥D.���− �̅�) = 𝑆@ + 𝑆A 

Similarly, their degrees of freedom have familiar relationship, the proof is obvious. 

 

  The above formula shows that the sum of squares of total deviations is composed of 

the sum of error deviations and the sum of squares of factor deviations. Therefore, 

formula(3-1) reflects the proportion of the two differences: 

																																																																								𝐹 = EF&
EF'

																																																								(3-2-1) 

where 𝑀𝑆 = G
H(

, is the mean square in statistics, it means how many sums of squares 

are on average in each degree of freedom. Thus, formula(3-1)can be rewritten as 

formula(3-2) in this example: 

																																																																			𝐹 =
)&
"&
)'
"'

=
)&
*+,
)'

*(#+,)

																																														(3-2-2) 

The larger the 𝐹, the more significant the difference caused by each level. Because 
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																																																																							𝑥!: = 𝜇! + 𝜀!:                     (3-2-3) 

thus the statistic F defined by the formula(3-2) follows the 𝐹 distribution of 𝑓A and 

𝑓@. Consider that the larger the value of 𝐹, the more it tends to reject the null 

hypothesis, therefore, the rejection domain of the test is: [24] 

																																																															𝑊 = {𝐹 ≥ 𝐹#'I(𝑓A, 𝑓@)}                (3-2-4) 

For certain 𝛼, we can make the following judgement: 

l If 𝐹 ≥ 𝐹#'I(𝑓A, 𝑓@), consider factor 𝐴 to be significant. 

l If 𝐹 < 𝐹#'I(𝑓A, 𝑓@), consider factor 𝐴 to be not significant. 

Through the above calculation and analysis, we can now list the analysis of variance 

in a table. The table of factor 𝐴 is shown in Table(3-5-1-2). 

SOURCE SS DF MS F PROB>F 

FACTOR 13.4 5 2.68 42.68 3.56791

× 10'## 

ERROR 1.507 24 0.06279   

TOTAL 14.907 29    

Table(3-2-1-2) the analysis of variance of factor 𝐴 for Sphere 

 

Figure(3-2-1-3) the boxplots for Factor 𝐴 Analysis for Sphere 

Set 𝛼 = 0.1, 𝐹%.7(5,24) = 2.10. Because 𝐹 = 42.68 > 2.10, therefore there is a 

significant different in the effect of factor 𝐴	(𝜔) on PSO performance. 𝑝 =

3.56791 × 10'## < 𝛼, so reject the null hypothesis. 
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  Similarly, for ANOVAs of function Griewank, factor 𝐵 and factor 𝐶 are all 

familiar with the one of factor 𝐴 for Sphere. Due to the big number of running data, 

the running data is shown in Appendix 2-1-2. 

 

SOURCE SS DF MS F PROB>F 

FACTOR 0.17656 5 0.03531 2.47 0.0612 

ERROR 0.34341 24 0.01431   

TOTAL 0.51997 29    

Table(3-2-1-2’) the analysis of variance of factor 𝐴 for Griewank 

 
Figure(3-2-1-3’) the boxplots for Factor 𝐴 Analysis for Griewank 

Set 𝛼 = 0.1, 𝐹%.7(5,24) = 2.10. Because 𝐹 = 2.47 > 2.10, therefore there is a 

significant different in the effect of factor 𝐴	(𝜔) on PSO performance. 𝑝 =

0.0612 < 𝛼, so reject the null hypothesis. 
 

(2)ANOVA for Factor 𝑩 

Sphere: 

Set	𝑐2 = 0.9, 𝜔 = 0.9; 𝑐11 = 0.3, 𝑐12 = 0.6, 𝑐13 = 0.9, 𝑐14 = 1.2, 𝑐15 =

1.5, 𝑐16 = 1.8. The running data for Sphere is shown in Appendix 2-2-1. 

 

SOURCE SS DF MS F PROB>F 
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FACTOR 1.31548

× 10'2 

5 2.63095 × 10'5 15.53 7.5072

× 10'1 

ERROR 4.0646

× 10'5 

24 1.69358 × 10'1   

TOTAL 1.72194

× 10'2 

29    

Table(3-2-2-2) the analysis of variance of factor 𝐵 for Sphere 

 
Figure(3-2-2-3) the boxplots for Factor 𝐵 Analysis for Sphere 

Set 𝛼 = 0.1, 𝐹%.7(5,24) = 2.10. Because 𝐹 = 15.53 > 2.10, therefore there is a 

significant different in the effect of factor 𝐵	(𝑐1) on PSO performance. 𝑝 =

7.5072 × 10'1 < 𝛼, so reject the null hypothesis. 

 

Griewank: 

The running data for Griewank is shown in Appendix 2-2-2. 

 

SOURCE SS DF MS F PROB>F 

FACTOR 1.68535

× 10'1 

5 3.3707 × 10'4 7.31 3 × 10'3 

ERROR 1.10661

× 10'1 

24 4.61089 × 10'7   
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TOTAL 2.79197

× 10'1 

29    

Table(3-2-2-2’) the analysis of variance of factor 𝐵 for Griewank 

 

Figure(3-2-2-3’) the boxplots for Factor 𝐵 Analysis for Griewank 

 

Set 𝛼 = 0.1, 𝐹%.7(5,24) = 2.10. Because 𝐹 = 7.31 > 2.10, therefore there is a 

significant different in the effect of factor 𝐵(𝑐1) on PSO performance. 𝑝 =

3 × 10'3 < 𝛼, so reject the null hypothesis. 
 

(3)ANOVA for Factor 𝑪 

Sphere: 

Set 	𝑐1 = 0.9, 𝜔 = 0.9; 𝑐21 = 0.3, 𝑐22 = 0.6, 𝑐23 = 0.9, 𝑐24 = 1.2, 𝑐25 =

1.5, 𝑐26 = 1.8. The running data for Sphere is shown in Appendix 2-3-1. 

 

SOURCE SS DF MS F PROB>F 

FACTOR 5 × 10'2 5 1.08659 × 10'2 5.48 0.0017 

ERROR 5 × 10'2 24 1.9821 × 10'5   

TOTAL 1 × 10'3 29    

Table(3-3-3-2) the analysis of variance of factor 𝐶 for Sphere 
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Figure(3-3-3-3) the boxplots for Factor 𝐶 Analysis for Sphere 

Set 𝛼 = 0.1, 𝐹%.7(5,24) = 2.10. Because 𝐹 = 5.48 > 2.10, therefore there is a 

significant different in the effect of factor 𝐶(𝑐2) on PSO performance. 𝑝 =

0.0017 < 𝛼, so reject the null hypothesis. 

Griewank: 

The running data for Griewank is shown in Appendix 2-3-2. 

 

 

SOURCE SS DF MS F PROB>F 

FACTOR 2.06848

× 10'5 

5 4.13695 × 10'1 21.01 4.67909

× 10'4 

ERROR 4.72556

× 10'1 

24 1.96898 × 10'4   

TOTAL 2.54103

× 10'5 

29    

Table(3-3-3-2’) the analysis of variance of factor 𝐶 for Griewank 
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Figure(3-3-3-3’) the boxplots for Factor 𝐶 Analysis for Griewank 

Set 𝛼 = 0.1, 𝐹%.7(5,24) = 2.10. Because 𝐹 = 21.01 > 2.10, therefore there is a 

significant different in the effect of factor 𝐶(𝑐2) on PSO performance. 𝑝 =

4.67909 × 10'4 < 𝛼, so reject the null hypothesis. 

 

  The results of the three groups of experiments show that the changes of 𝜔, 𝑐1 and 

𝑐2 all have significant differences on PSO performance. Review the algorithm 

content of Section II of this paper, we only uses descent method on 𝜔 and 𝑐1, it can 

be guessed that the changes of the two also have a significant impact on the 

performance of PSO. Here may wish to use two-way ANOVA to explore the impact 

of the two on performance. 

 

  The mathematical principles of two-way ANOVA are basically same with the one-

way ANOVA’s. For two-way ANOVA with interaction, the results of each 

experiment can be expressed as: 

																																																	𝑦!:& = 𝜇 + 𝛼! + 𝛽: + 𝛾!: + 𝜀!:&                (3-2-5) 

where 𝜇 is the mean value, 𝑎! , 𝑏: 	and	𝛾!: are the error due to factor 𝐴, 𝐵 and 

interaction of 𝐴 and 𝐵 respectively, 𝜀!:& is the random error at the ith and the jth 

level. 
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  Similarly, two-way ANOVA also own its relationship between the 5 kinds of 

deviation sum of squares: 

𝑆? = 𝑆A + 𝑆B + 𝑆A×B + 𝑆@                  (3-2-6) 

where 

𝑆? =���*𝑥!:L − �̅�2
$

M

:0#

8

!0#

&

L0#

			𝑓? = 𝑚𝑛𝑘 − 1 

𝑆A = 𝑛𝑘�(𝑥D.���− �̅�)$
8

!0#

			𝑓A = 𝑚 − 1 

𝑆B = 𝑚𝑘�*𝑥.N��� − �̅�2
$

M

:0#

			𝑓B = 𝑛 − 1 

𝑆A×B = 𝑘��*𝑥!: − 𝑥D. .����− 𝑥.N.���� + �̅�2$
M

:0#

8

!0#

			𝑓A×B = (𝑚 − 1)(𝑛 − 1) 

𝑆@ =���*𝑥!:L − 𝑥DN.���� 2$
M

:0#

8

!0#

&

L0#

			𝑓@ = 𝑚𝑛(𝑘 − 1) 

The proof of Eq(3-7) is similar with that of Eq(3-1), so it is omitted here. 

 

(4)ANOVA for Factor 𝑨 and 𝑩 

  Set 𝑐2 = 0.8; 𝜔# = 0.3, 𝜔$ = 0.6, 𝜔6 = 0.9, 𝜔3 = 1.2, 𝜔2 = 1.5, 𝜔5 =

1.8; 𝑐11 = 0.2, 𝑐12 = 0.4, 𝑐13 = 0.6	𝑐14 = 0.8, 𝑐15 = 1.0, 𝑐16 = 1.2. Do 3 two-

way ANOVA experiments at each level of factor 𝐴 and 𝐵 (hence 𝑘 = 3,𝑚 = 𝑛 =

6). Test the following hypothesis: 

𝐻%#: 𝛼# = 𝛼$ = ⋯ = 𝛼! 

𝐻%$: 𝛽# = 𝛽$ = ⋯ = 𝛽: 

𝐻%6: 𝛾## = 𝛾#$ = ⋯ = 𝛾$# = 𝛾$$ = ⋯ = 𝛾!: 

Their alternative hypothesis are: 

𝐻##: 𝛼#, 𝛼$, … , 𝛼M	𝑎𝑟𝑒	𝑛𝑜𝑡	𝑎𝑙𝑙	𝑒𝑞𝑢𝑎𝑙 

𝐻#$: 𝛽#, 𝛽$, … , 𝛽M	𝑎𝑟𝑒	𝑛𝑜𝑡	𝑎𝑙𝑙	𝑒𝑞𝑢𝑎𝑙 

𝐻#6: 𝛾##, 𝛾#$, … , 𝛾!: 	𝑎𝑟𝑒	𝑛𝑜𝑡	𝑎𝑙𝑙	𝑒𝑞𝑢𝑎𝑙 
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The running data for Sphere is shown in Appendix 2-4: 

SOURCE SS DF MS F PROB>F 

FACTOR A 60.92381 5 12.18476 153.3047 6.2175

× 10'61 

FACTOR B 1.93818 5 0.38764 4.87712 6.7311

× 10'3 

INTERACTION 

EFFECT 

5.39999 25 0.21600 2.71764 5.1304

× 10'3 

ERROR 5.72261 72 0.07948   

TOTAL 73.98459 107    

Table(3-2-4-2) the analysis of variance of factor 𝐴 and 𝐵 for Sphere 

Set 𝛼 = 0.1, 𝐹%.7(5,72) = 1.93. Because 𝐹A = 153.3047 > 1.93, 𝐹B =

4.87712 > 1.93, 𝐹A×B = 2.71764 > 1.93, therefore there is a significant different in 

the effect of factor 𝐴(𝜔), 𝐵(𝑐1) and ′𝐴 × 𝐵	′ on PSO performance. 𝑝A =

6.2175 × 10'61 

< 𝛼, 𝑝B = 6.7311 × 10'3 < 𝛼, 𝑝A×B = 5.1304 × 10'3 < 𝛼, so reject the null 

hypothesis. 

 

  The effect of the two-factor ANOVA on the performance of PSO under the 

Griewank function is omitted here. It can be expected that all three factors’ effect 

have a significant different on PSO performance. 

 

  Additionally, when the test results are significant, we can further find out total 

mean 𝜇, each horizontal effect 𝑎! and error variance 𝜎$. 

 

  Because 𝑋!:~𝑁(𝜇, 𝜎$), therefore the likelihood function is: 

																	𝐿(𝜇, 𝑎#, 𝑎$, 𝑎6, 𝑎3, 𝑎2, 𝑎5, 𝜎$) = ∏ ∏ ¡ #
√$(P%

exp ¥− QR/0'S'9/T
%

$P%
¦§2

:0#
5
!0# (3-2-

7) 

Its Log-Likelihood function is: 
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		𝑙(𝜇, 𝑎#, 𝑎$, 𝑎6, 𝑎3, 𝑎2, 𝑎5, 𝜎$) = − M
$
ln(2𝜋𝜎$) − #

$P%
∑ ∑ *𝑦!: − 𝜇 − 𝑎!2

$	2
:0#

5
!0# (3-2-

8) 

where 𝑛 = 𝑚𝑘 = 30. 

Then the likelihood equations (Eq3-2-9) are: 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 𝜕𝑙

𝜕𝜇
=
1
𝜎$
��*𝑦!: − 𝜇 − 𝑎!2

$
2

:0#

5

!0#

= 0

𝜕𝑙
𝜕𝑎!

=
1
𝜎$�

*𝑦!: − 𝜇 − 𝑎!2 = 0
2

:0#

𝜕𝑙
𝜕𝜎$

= −
𝑛
2𝜎$

+
1
2𝜎3

��*𝑦!: − 𝜇 − 𝑎!2
$

2

:0#

5

!0#

= 0

�𝑎! = 0
5

!0#

 

Solve the equations(3-2-9), the maximum likelihood estimation of each parameter can 

be found out: 

⎩
⎪
⎨

⎪
⎧

�̂� = 𝑦	�
𝑎D± = 𝑦D.���− 𝑦�,			𝑖 = 1,2, , … ,6

𝜎E²
$ =

1
𝑛
��*𝑦!: − 𝑦D.��� 2

$
2

:0#

5

!0#

=
𝑆@
𝑛

 

Specially, because 𝜎E²
$ is not the unbiased estimation of 𝜎$, we usually take Eq(3-

2-10) into practical problem solving:[24] 

																																																																𝜎³$ = 𝑆@ =
F'
H'
																																																			(3-2-10) 

According to the running data shown in Appendix 2-1-1 to 2-3-2, let their subscript 

codes be A, A’, B, B’, C and C’ respectively, the value of �̂�, 𝑎³ and 𝜎³$ of each 

circumstance can be found. Only part of the calculation results are shown here. The 

detailed value can be seen in Appendix 3-1. 

𝜇A² = 0.611362362195, 𝜇A,² = 0.05176453825,… 

𝑎A#² = −0.580143282195,	 𝑎B#² = −3.6163 × 10'3,	 𝑎C#² = −8.5111 × 10'3,…	

𝜎A²
$ = 0.062792,… 

  Next, confidence intervals for each level of the factor 𝐴, 𝐵 and 𝐶 are discussed 

below. 
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  Because 𝑦D.���~𝑁(𝜇! ,
P%

&
), F'

P%
~𝜒$(𝑓@) and both of them are independent, therefore  

																																																												
√𝑘(𝑦D.���− 𝜇!)

¶𝑆@𝑓@
	

~𝑡(𝑓@)																																				(3 − 2 − 11) 

According to formula(3-2-11), the confidence interval for the level mean of 𝐴! for 

1 − 𝛼 for 𝜇! is: 

																																																														·𝑦D.���±
𝑡#'I$

(𝑓@)𝜎³

√𝑘
¹																																						(3 − 2 − 12) 

where 𝜎³ is given in Eq(3-11). Before we have obtained 𝜇A² = 0.611362362195, 

𝜇A,² = 0.05176453825, 𝜇B² = 5.3532 × 10'3, 𝜇B2² = 8.0576 × 10'2, 𝜇C² =

0.00913456, 𝜇C2² = 1.8589 × 10'3; 𝜎A²
$ = 0.062792, 𝜎A2²

$ = 0.014309, 𝜎B²
$ =

1.69535 × 10'2, 𝜎B2²
$ = 4.6109 × 10'1, 𝜎C²

$ = 2.0833 × 10'3, 𝜎C2 	² $ =

1.9689 × 10'5 (shown in Appendix 3-1), set 𝛼 = 0.1, 𝑡#'3%
(𝑓@) = 𝑡%.72(24) =

1.7109, then the value of 𝜇A, 𝜇A2; 𝜇B, 𝜇B22; 𝜇C  and 𝜇C2 can be figured out. Also, 

only part of the calculation results are shown here. The detailed values are shown in 

Appendix 3-2. 

𝜇A: º0.6113623 ± 1.7109 ×
√0.062792

√5
» = [0.4992982,0.7234266] 

𝜇A2: º0.0517645 ± 1.7109 ×
√0.014309

√5
» = [0,0.14903245] 

… 

 

3-3 Convergence Analysis 

This part mainly discuss this problem:[25] 

																																																							min 𝑓(𝑥)		(𝑥 ∈ 𝑆 ∈ 𝑅M)                 (3-3-1) 

However, in this situation, if the function is discontinuous and the discontinuity 

measure is 0, for example: 
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																																																																				𝑓 = ¡ 𝑥
$	(𝑥 ≠ 1)

−1		(𝑥 = 1)                   (3-3-2) 

Obviously, the minimum value of 𝑓 is -1 when 𝑥 = 1, but its measure 

𝜇(𝑥 = −1) = 0, therefore it is impossible for whether PSO or DSCPSO to find the 

best solution. In order to avoid such circumstance, we rewrite problem(3-3-1) in (3-3-

3): 

																																																					𝜓 = inf	{𝑥|𝑣(𝑧 ∈ 𝑆|𝑓(𝑧) < 𝑥) > 0}          (3-3-3) 

Because the Lebesgue measure 𝑣(𝑥|𝑓(𝑧) < 𝑥) > 0, it can avoid the circumstance 

above. 

 

  In order to express the detail convergence criterion of random algorithms, their 

basic structure is shown below 

𝑆𝑡𝑒𝑝	0: 𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦	𝑐ℎ𝑜𝑜𝑠𝑒	𝑡ℎ𝑒	𝑠𝑡𝑎𝑟𝑡	𝑝𝑜𝑖𝑛𝑡	𝑧% ∈ 𝑆, 𝑠𝑒𝑡	𝑘 = 0; 

𝑆𝑡𝑒𝑝	1: 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒	𝑣𝑒𝑐𝑡𝑜𝑟	𝜉&ÃÃÃ⃗ 	𝑓𝑟𝑜𝑚	𝑆𝑎𝑚𝑝𝑙𝑒	𝑆𝑝𝑎𝑐𝑒(𝑅M, 𝐵, 𝜇&) 

𝑆𝑡𝑒𝑝	2: 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒	𝑧&*# = 𝐼*𝑧& , 𝜉&ÃÃÃ⃗ 2, 𝑐ℎ𝑜𝑜𝑠𝑒	𝜇&*#, 𝑙𝑒𝑡	𝑘

= 𝑘 + 1	𝑎𝑛𝑑	𝑟𝑒𝑡𝑢𝑟𝑛	𝑡𝑜	𝑆𝑡𝑒𝑝	1 

where 𝐵 is a 𝜎 − 𝑓𝑖𝑒𝑙𝑑 of a subset of 𝑅M, 𝜇& is the probability measure in 𝐵 and 

(𝑅M, 𝐵, 𝜇&) represents the probability space of the algorithm at the kth iteration time. 

Function 𝐼 is the way that the algorithm iterates. 

 

Definition 3-3-4:  

Set 𝑀& is a subset of 𝑅M, then call it the support set of 𝜇& if it satisfies the 

restrictions below: 

𝜇&(𝑀&) = 1 

𝑇𝑎𝑘𝑒	𝑎𝑛𝑦	𝑝𝑜𝑖𝑛𝑡	𝑐𝑜𝑙𝑢𝑚𝑛	{𝑦&}&0#*,

⊆ 𝑀& , 𝑓𝑜𝑟	𝑎𝑛𝑦	𝑜𝑓	𝑖𝑡𝑠	𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡	𝑠𝑢𝑏𝑐𝑜𝑙𝑢𝑚𝑛𝑠Æ𝑦:&Ç&0#
*, , 𝑠𝑎𝑡𝑖𝑠𝑓𝑦	 lim

:→*,
𝑦:& ∈ 𝑀& 	 

𝐼𝑓	∀𝑁 ⊆ 𝑅M	𝑎𝑛𝑑	𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠	𝑡ℎ𝑒	2	𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑠	𝑎𝑏𝑜𝑣𝑒, 𝑡ℎ𝑒𝑛	𝑀& ⊆ 𝑁	 

 

  Additionally, a random algorithm ought to satisfy the hypothesis below: 
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Hypothesis 1: 

𝑓 É𝐼*𝑧, 𝜉2Ê ≤ 𝑓(𝑧) 

and if 𝜉 ∈ 𝑆, then 

𝑓 É𝐼*𝑧, 𝜉2Ê ≤ 𝑓(𝜉) 

Hypothesis 2:  

For any Borel Subset 𝐴 of 𝑆, if its measure 𝑣(𝐴) > 0, then 

Ë*1− 𝜇&(𝐴)2 = 0
,

&0%

 

where 𝜇&(𝐴) is the probability that get 𝐴 from measure 𝜇&. 

 

  Moreover, a sufficient and necessary condition for the global convergence of the 

random algorithm can be given by Hypothesis 1 and 2: 

Theorem 3-3-5:  

Suppose 𝑓 is a measurable function, area 𝑆 is a measurable subset and 

Hypothesis 1, 2 satisfy. Set the algorithm-generated solution sequence is {𝑧&}&0#*, , 

which satisfy 

lim
&→*,

𝑃(𝑧& ∈ 𝑅V) = 1 

where 𝑅V is the 𝜀 − 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒	𝑓𝑖𝑒𝑙𝑑 of the algorithm, which is expressed as  

𝑅V = {𝑧 ∈ 𝑆|𝑓(𝑧) < 𝜓 + 𝜀} 

where 𝜀 > 0; and 𝑃(𝑧& ∈ 𝑅V) is the solution generated by the algorithm at the kth 

iteration time. 

Proof:  

  From Hypothesis 1, if 𝑧& ∈ 𝑅 or 𝜉&ÃÃÃ⃗ ∈ 𝑅, then for ∀𝑘/ > 𝑘, satisfy 𝑧&2 ∈ 𝑅V, 

therefore 

																										𝑃(𝑧& ∈ 𝑅V) = 1 − 𝑃(𝑧& ∈ 𝑆\𝑅V) ≥ 1 −Ë*1 − 𝜇!(𝑅V)2
&'#

!0%

		(3 − 3 − 6) 
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Take the limit of 𝑃(𝑧& ∈ 𝑅V) and ∏ *1 − 𝜇!(𝑅V)2&'#
!0% , then 

																															1 − lim
&→*,

Ë*1− 𝜇!(𝑅V)2
&'#

!0%

≤ lim
&→*,

	𝑃(𝑧& ∈ 𝑅V) ≤ 1							(3 − 3 − 7) 

  From Hypothesis 2, because 	

Ë*1 − 𝜇&(𝐴)2 = 0
,

&0%

 

therefore 

																																																											 lim
&→*,

	𝑃(𝑧& ∈ 𝑅V) = 1																																			(3 − 3 − 8) 

 

3-3-1 Convergence Analysis of the Standard PSO 

Theorem 3-3-1-1:  

The standard PSO satisfies Hypothesis 1. 

Proof:  

  For the function 𝐼: 

𝐼*𝑝W,& , 𝑥!,&2 = ;
𝑝W,& 		𝑓*𝑝W,&2 ≤ 𝑓(𝑥!,&)
𝑥!,&*#		𝑓*𝑝W,&2 > 𝑓(𝑥!,&)

 

where 𝑥!,&*# = 𝑥!,& + 𝜔𝑣!,& + 𝑐#𝑟𝑎𝑛𝑑#*𝑝𝑏𝑒𝑠𝑡! − 𝑥!,&2 + 𝑐$*𝑔𝑏𝑒𝑠𝑡 − 𝑥!,&2 and 𝑥!,& 

represents the location of the ith particle at the kth iteration time. Obviously, the 

standard PSO satisfy Hypothesis 1. 

 

Theorem 3-3-1-2:  

The standard PSO do not satisfy Hypothesis 2. 

Proof:  

  The standard PSO satisfies formula (3-3-9) if it satisfies Hypothesis 2: 

																																																																				𝑆 ⊆Í𝑀!,&

Y

!0#

																																											(3 − 3 − 9) 

where 𝑀!,& represents the support set of the ith particle at the kth iteration time. 
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Because  

𝑉(𝑡) = 𝑋(𝑡) − 𝑋(𝑡 − 1) 

𝑋(𝑡 + 1) = 𝑋(𝑡) + 𝑤𝑉(𝑡) − 𝑋(𝑡)(𝜙# + 𝜙$) + 𝑃𝜙# + 𝑃W𝜙$ 

Therefore  

							𝑀!,& = 𝑥!,:,&'# +𝑤*𝑥!,:,&'# − 𝑥!,:,&'$2 + 𝜙#*𝑃 − 𝑥!,:,&'#2 + 𝜙$(𝑃W − 𝑥!,:,&'#)    

(3-3-10) 

where 𝑥!,:,&'# represents the value of the jth dimension of the ith particle at the kth 

iteration time; 0 ≤ 𝜙# ≤ 𝑐#, 0 ≤ 𝜙$ ≤ 𝑐$. It is obvious that 𝑀!,& represents a 

hyper-rectangle confirmed by 𝜙# and 𝜙$. 

 

  When max*𝑐#Ñ𝑃 − 𝑥!,:,&'#Ñ, 𝑐$Ñ𝑃W − 𝑥!,:,&'#Ñ2 <
#
$
𝑑𝑖𝑎𝑚:(𝑆) holds, it is clear that 

𝑣*𝑀!,& ∩ 𝑆2 < 𝑣(𝑆), where 𝑑𝑖𝑎𝑚:(𝑆) represents the length of 𝑆 at the jth 

dimension. Because 𝑥! →
Z,[*Z%[4
Z,*Z%

[25], therefore lim
&→*,

𝑀!,& = 0, which says with the 

increase of iteration times 𝑘, 𝑣*𝑀!,&2 and 𝑣(⋃ 𝑀!,&
)
!0# ) are decreasing, which infer 

to 𝑣*⋃ 𝑀!,& ∩ 𝑆)
!0# 2 < 𝑣(𝑆). This indicates that ∃𝑘′ ∈ 𝑍, when 𝑘/ > 𝑘, there 

∃𝑠𝑢𝑏𝑠𝑒𝑡	𝐴 ∈ 𝑆, let  

																																																															�𝜇!,&(𝐴) = 0
Y

!0#

																																								(3 − 3 − 10) 

which means 	

Ë*1 − 𝜇&(𝐴)2 = 1 ≠ 0
,

&0%

	

	

	 	 Therefore the standard PSO satisfies Hypothesis 1 but do not satisfy Hypothesis 2, 

which indicates that the standard PSO is not a global convergence algorithm. 

	

3-3-2 Convergence Analysis of DSCPSO 

Theorem 3-3-2-1:  

仅
用
于

20
22
丘
成
桐
中
学
科
学
奖
公
示

20
22

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

s



 39 

  DSCPSO do not satisfy Hypothesis 1. 

Proof:  

  Because DSCPSO combines SAA and Cauchy mutation, on the one hand, 

according to formula (2-2-1), there is always a probability greater than 0 for the 

particles to accept a worse solution. On the other hand, according to formula (2-3-3), 

the particles will randomly oscillate to a position, it will be better or worse. Therefore,  

for DSCPSO, it cannot ensure 

𝑓 É𝐼*𝑧, 𝜉2Ê ≤ 𝑓(𝑧) 

which says DSCPSO do not satisfy Hypothesis 1. 

 

Theorem 3-3-2-2:  

DSCPSO satisfies Hypothesis 2. 

Proof:  

  DSCPSO is an algorithm generated by PSO combining with SAA and Cauchy 

mutation. Due to the randomness of Metropolis criterion and Cauchy mutation, let the 

union of the support sets for all particles be 𝛼, ∃𝑘/ > 𝑘, makes 𝛼 ∈ 𝑆.. Therefore 

when 𝑣(𝐴) > 0 

�𝜇!,&(𝐴) = 1
Y

!0#

 

which indicates  

Ë*1− 𝜇&(𝐴)2 = 0
,

&0%

 

 

Therefore DSCPSO do not satisfy Hypothesis 1 but satisfies Hypothesis 2, which 

indicates that DSCPSO is not a global convergence algorithm. 

	

	 	 Because DSCPSO do not satisfy Hypothesis 1, it is not a local convergence 

algorithm as well.[25]  
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IV. The Application - Nucleic Acid Sample Collection 

Scheduling Optimization Problem 

4-1 The Background 

  At the end of 2019, the global COVID-19 epidemic first broke out in Wuhan and 

quickly spread to the whole country and the world, bringing a very large negative 

impact on the economy, politics, people's livelihood and other aspects of countries 

around the world. In order to curb the further spread of the epidemic, the Chinese 

government has implemented a number of measures including regional closure 

management, nationwide material and human support, vaccine and nucleic acid 

detection kit research and development. Among them, the display index of the nucleic 

acid kit is an important basis for whether the reference individual is positive or not. 

 

  China's nucleic acid kits were developed as early as January 2020 and were used in 

the most severely affected areas at that time. With the development of productivity 

and the continuous maturity of related technologies, the scope of using nucleic acid 

kits developed in China has been continuously expanded and gradually developed to 

the whole country. Guo Yanhong, the supervisory commissioner of the National 

Health and Medical Commission's Medical Administration and Hospital 

Administration Bureau, said at the press conference of the State Council's joint 

prevention and control mechanism that as of May 13, 2022, there are 13,000 medical 

and health institutions nationwide that can carry out nucleic acid testing, with 153,000 

professional The technicians are engaged in nucleic acid detection technology. The 

nucleic acid detection capacity has reached 57 million tubes per day. The nucleic acid 

detection capacity has been significantly improved.[26] 

 

  In July this year, the epidemic broke out again in Chenghua District, Chengdu. The 

district government quickly organized and carried out all-staff accounting and testing, 

which effectively curbed the spread of the epidemic. In this section of the paper, we 

will study the optimal scheduling problem of nucleic acid specimen collection, and 
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analogize it to the Traveling Salesman Problem, and use the improved PSO which has 

been proposed in the earlier section to solve the problem. 

 

4-2 The Mathematical Model Establishment and Solution 

4-2-1 Collection Vehicles Scheduling Selection 

  This section mainly studies the collection and scheduling of nucleic acid samples in 

Chenghua District, Chengdu. Therefore, the location information of nucleic acid 

testing points and testing centers is collected from the official government website. 

However, due to the large number of nucleic acid detection points, this article will 

divide the scope of nucleic acid detection points according to the geographical 

location of each street. The locations of the streets and nucleic acid testing centers in 

Chenghua District are shown in Figure(4-2-1-1). 

 
Figure(4-2-1) the location of the streets and nucleic acid testing centers in Chenghua District 
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(The sources are from http://scdfz.sc.gov.cn/scdqs/szdq/cds/chq/content_17758 and 

https://mp.pdnews.cn/Pc/ArtInfoApi/article?id=13862572) 

  

where the location of each street (subject to the location of the street office) is marked 

as  and there are 3 nucleic acid testing centers, they are Sichuan Jinyu Medical 

Laboratory Center (painted in red), Chengdu Sixth People's Hospital (painted in 

orange) and Chengdu Chenghua District Center for Disease Control and Prevention 

(painted in blue). 

   

  According to the information from government website, there are 14 streets in 

Chenghua District[27]. Because the range of Qinglong and Longtan is much bigger 

than others, therefore set up two nucleic acid sample collection points in each of these 

two streets and set one in other street. See Table(4-2-1-2) and Figure(4-2-1-4) for the 

numbers and coordinates of nucleic acid sample collection points in each sub-district 

office, and see Matrix(4-2-1-3) for the distances between collection points: (Due to 

the large number of collection points, only part of the data is displayed. The detail can 

be seen in Appendix 4) 

Number Location Coordinate 

1 Mengzhuiwan 104.10236E , 30.67693N 

2 Shuangqiaozi 104.11259E , 30.65368N 

3 Bailianchi 104.14495E , 30.73159N 

4 Jianshe Road 104.07275E , 30.57899N 

…   

15 Longtan (1) 104.17110E , 30.71094N 

16 Longtan (2) 104.17906E , 30.71167N 

(17) Sichuan Jinyu Medical Laboratory 

Center 

104.17518E , 30.69329N 

(18) Chengdu Sixth People's Hospital 104.11468E , 30.67275N 
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(19) Chengdu Chenghua District Center 

for Disease Control and Prevention 

104.11639E , 30.71449N 

Table(4-2-1-2) the numbers and coordinates of nucleic acid sample collection points in each street 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

⎝

⎜
⎜
⎜
⎜
⎛

0 3.4 11 2.3 … 11 1.7 6.7
3.4 0 13 3.1 … 9.7 2.2 9.2
11 13 0 11 … 8.1 11 4.3
2.3 3.1 11 0 … 8.6 1.3 6.2
… … … … … … … …
11 9.7 8.1 8.6 … 0 9.9 9.1
1.7 2.2 11 6.3 … 9.9 0 7.2
6.7 9.2 4.3 1.2 … 9.1 7.2 0 ⎠

⎟
⎟
⎟
⎟
⎞

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Matrix(4-2-1-3) the distances between collection points (unit: 𝑘𝑚) 

where element 𝑥!: presents the distance between point i and point j. 

 
Figure(4-2-1-4) Nucleic acid sample collection point coordinate scatter plot 

 

4-2-2 Model Assumptions 

  In order to transform the sub-scheduling model into a mathematical model, where 

model assumptions are made to ensure accuracy and rigor. 

1. Three nucleic acid specimen collection vehicles depart from three nucleic acid 

testing centers (point 17, point 18 and point 19) respectively; 

2. Each collection vehicle can freely choose the collection point it will go to. Each 

collection point must have one and only one collection vehicle passing by; 

3. Set the velocity of each collection vehicle is 𝑉 = 0.5𝑘𝑚/𝑚𝑖𝑛 and stop for 3 

minutes at each collection point; 

4. Each collection vehicle must eventually return to the original starting point. 
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5. The collection vehicles do not need to go through a testing center that is not its 

own original starting point; 

6. Due to the different detection efficiencies of the three detection centers, the three 

final times of point 17, point 18 and point 19 need to be multiplied by 0.98, 

1.05	and 1.02 times respectively. 

4-2-3 Model Building 

Treat this scheduling problem as a 0-1 planning problem, build mathematical 

model of TSP. Let the subscripts of the three collection vehicles which depart from 

point 17, point 18 and point 19 be 𝑎,	𝑏, 𝑐. Determine if two collection points are 

connected for a collection vehicle: 

𝑥&!' = 91		𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛	𝑣𝑒ℎ𝑖𝑐𝑙𝑒	𝑝	𝑔𝑜𝑒𝑠	𝑓𝑟𝑜𝑚	𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛	𝑝𝑜𝑖𝑛𝑡	𝑖	𝑡𝑜	𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛	𝑝𝑜𝑖𝑛𝑡	𝑗	
0		𝑒𝑙𝑠𝑒

 

where 𝑝 = 𝑎, 𝑏, 𝑐 and 𝑖, 𝑗 = 1,2,3,4, … ,19.  

The resulting planning model is as follows: 

																	Min	𝑇 = 0.98�𝑑!:𝑥9!:

#7

!\:

+ 1.05�𝑑!:𝑥]!:

#7

!\:

+ 1.02�𝑑!:𝑥Z!:

#7

!\:

										(4 − 1) 

																																									�𝑥^!: = 1
#7

:0#

, 𝑝 = 𝑎, 𝑏, 𝑐, 𝑖 = 1,2,3, … ,16																											(4 − 2) 

																																									�𝑥^!: = 1
#7

!0#

, 𝑝 = 𝑎, 𝑏, 𝑐, 𝑗 = 1,2,3, … ,16																											(4 − 3) 

														� 𝑥^!: < |𝑠| − 1
#7

!,:∈`

, 2 ≤ |𝑠| 	≤ 19 − 1, 𝑠 ⊂ {1,2,3, … ,19}, 𝑝 = 𝑎, 𝑏, 𝑐			(4 − 4) 

where formula(4-1) indicates the goal of finding the minimum time index. Specially, 

the “time index” here is not length of time in general concept, but refers to the total 

time or work cost consumed (To express the length of time in common concepts, 

formula(4-1) can be rewritten to 

Min{Max{0.98∑ 𝑑!:𝑥9!:#7
!\: , 1.05∑ 𝑑!:𝑥]!:#7

!\: , 1.02∑ 𝑑!:𝑥Z!:#7
!\: }}). Formula(4-2) and 

(4-3) show every point must be stopped once and only once. Formula(4-4) shows each 

point can and can only be used as the starting point and the ending point of the route 

once. 
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For the calculation of the running time of each collection vehicle, the following 

formula is given: 

																																																																							𝑡^# =
𝑆^
𝑉 																																																							(4 − 5) 

																																																																					𝑡^$ =�3𝑥!:

#7

!\:

																																														(4 − 6) 

																																																																	𝑇 = 𝑡^# + 𝑡^$																																																		(4 − 7) 

																																																															𝑇 = 𝑇9 + 𝑇] + 𝑇Z 																																															(4 − 8) 

where formula(4-5) indicates the transport time of the collection vehicle; formula(4-6) 

indicates the time taken for the collection vehicle to collect specimens at the test 

point. Time per collection vehicle and total time for three collection vehicles is shown 

in formula(4-7) and (4-8). 

 

4-2-4 Model Solving Based on the Improved PSO 

  Set 𝑐10 = 1, 𝑐2 = 0.1, 𝜂 = 1, iteration times 𝑘 = 1000, 𝑐#& = 0.4, 𝑇 = 2000, 

𝑑𝑇 = 0.98 and particle number 𝑁 = 500. Use DSCPSO to solve the problem, and 

choose CK as the descend method. The optimization process and final result are 

shown in Figure(4-2-4-1) and Table(4-2-4-2). 

 
Figure(4-2-4-1), the curve optimization process 

Point number Vehicle number Arrival time Departure time 

0 100 200 300 400 500 600 700 800 900 1000
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1 1 49.998 52.998 

2 1 32.202 35.202 

3 3 8.598 11.598 

4 1 57.600 60.600 

5 1 66.900 69.900 

6 1 63.600 66.600 

7 1 73.902 76.902 

8 1 39.000 42.000 

9 1 23.598 26.598 

10 3 37.398 40.398 

11 1 80.298 83.298 

12 1 15.600 18.600 

13 3 20.202 23.202 

14 3 25.602 28.602 

15 1 91.698 94.698 

16 1 97.698 100.698 

Table(4-2-4-2) the optimization result 

In Table(4-2-4-2), the first column represents the each nucleic acid sample 

collection point; the second column represents vehicle responsible for sample 

collection at the point (Collecting vehicles leaving from points 17, 18, 19 are recorded 

as 1, 2, and 3 respectively); the third column and the fourth column represent the 

arrival time and departure time of certain collection at the certain point. 

 

According to Figure(4-2-4-1), when the iteration is less than 350 times, the decline 

speed is fast, and then the speed becomes stable, and the optimal solution is found 

around the 730th time. According to Table(4-2-4-2), the optimal scheduling route of 

this model is: 

Vehicle 1: 17→12→9→2→8→1→4→6→5→7→11→15→16→17 

Vehicle 2: Idle 
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Vehicle 3: 19→3→13→14→10→19 

 

Therefore, from the time when the three collection vehicles set off from their 

respective nucleic acid testing centers to collect nucleic acid samples to the last 

collection vehicle returning to the starting point, the time index (Min	𝑇) is 𝟏𝟓𝟔. 𝟏𝟔𝟐. 

 

4-3 Algorithm Sensitivity Analysis 

For the parameter setting of DSCPSO, for the number of particles	𝑁, in general, 

the more particles, the stronger the search ability, vice versa; for the temperature drop 

rate 𝑑𝑇, the greater the 𝑑𝑇, the greater the probability of accepting a poor solution 

when performing SAA, vice versa; for the jump distance factor 𝜂 in Cauchy 

mutation, the larger the 𝜂, the larger the particle jump, which can better prevent 

falling into the local optimal solution, but it will consume the convergence time, vice 

versa; for the maximum time of iterations 𝑘, if it is too small, it will not be easy to 

converge to the optimal solution, and if it is too large, it will take more time, so it 

needs to be set moderately. Study the settings of parameters 𝑐#%, 𝑐$, 𝑐#&, 𝑁, 𝜂, 𝑑𝑇 

and 𝑘, the result is shown in Table(4-3-1). 

𝜂 𝑐#% 𝑐#& 𝑐$ 𝑁 𝑑𝑇 𝑘 Min	𝑇 

1 1 0.4 0.1 1000 0.98 1000 156.162 

2 1 0.4 0.1 1000 0.98 1000 156.948 

3 1 0.4 0.1 1000 0.98 1000 156.816 

0.5 1 0.4 0.1 1000 0.98 1000 163.956 

1 1 0.4 0.1 1000 0.99 500 156.360 

1 1 0.4 0.1 1000 0.98 500 158.874 

1 1 0.4 1 1000 0.98 1000 181.144 

1 0.1 0.04 1 1000 0.98 1000 170.208 

1 1 0.4 0.1 1000 0.95 1000 165.288 

1 1 0.4 0.1 1000 0.90 1000 165.678 

1 2 0.8 0.1 1000 0.98 1000 156.360 
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1 1 0.4 0.1 500 0.98 1000 156.162 

1 1 0.4 0.1 500 0.98 1500 156.360 

1 1 0.4 0.1 500 0.99 1500 156.360 

1 1 0.4 0.1 1500 0.98 1000 156.162 

Table(4-3-1), the result of different parameter settings 

  According to Table(4-3-1), for this model, the personal experience of particles 

needs to be considered more and the group experience needs to be considered less.[28] 

In order to ensure the iterative effect, it is more reasonable to set the maximum time 

of iterations to 1000 and to improve the running speed of the program, it is known 

that the optimal solution can be found by setting the number of particles 𝑁 = 500 

and 𝑁 = 1000 when other parameters are the same, therefore 𝑁 = 500 is chosen. 

 

Seen in Table(4-2-4-2), collection vehicle 1 went to the most nucleic acid testing 

points while collection vehicle 2 was idle. That is because although the nucleic acid 

testing center 17 is far from the center of the district, it has a lower time multiplier, 

and although the testing center 18 is closer to the center of the district, because it is a 

general hospital, nucleic acid specimen testing is not its main character. The time 

penalty is larger, so less nucleic acid detection points are allocated to it，which shows 

that the detection efficiency of the nucleic acid testing center has a greater impact on 

vehicle deployment than its location. Specialized nucleic acid testing institutions 

should undertake more testing work. However, due to the lack of internal data of 

nucleic acid testing centers, the testing efficiency of each center is only a guess and 

this model is only a simplified discussion of nucleic acid sample collection work, so 

in reality, it should be analyzed in combination with the actual situation, but the above 

conclusions are still valid. 

 

4-4 Conclusion 

This section mainly studies the scheduling optimization of nucleic acid specimen 

collection vehicles using DSCPSO. The path planning model in the traveling 
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salesman problem, the average speed of the vehicle, the residence time and the 

distance of each nucleic acid detection point are selected to solve, and the sensitivity 

of the algorithm is calculated. From the experimental results, through the setting of 

various parameters, DSCPSO successfully solved the optimal scheduling model. The 

average time of iterations is about 700, and the optimal time index 𝑀𝑖𝑛	𝑇 =

156.162. The specific route arrangement of each collecting vehicle has been listed 

above.  

V. Conclusion and Prospects for Future Research 

  This paper firstly summarizes the research history and application scenarios of 

PSO, and proposes a DSCPSO algorithm combining parameter descent, SAA and 

Cauchy mutation according to the actual defects of the standard PSO. Secondly, the 

algorithm is given statistical and measure theory parameter analysis, variance analysis 

and convergence analysis, and finally applied the algorithm to the actual problem for 

the scheduling problem of specimen collection vehicles. Besides, in the processing of 

practical problems, we can also see that the convergence speed of DSCPSO is still 

not very fast, and it is greatly affected by the parameter settings, so that it cannot 

converge to the global best after enough iterations under the values of some 

parameters. Therefore, in the future, it is still necessary to explore better ways to 

improve the algorithm so that the algorithm converges faster and is less affected by 

parameter settings. 
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Appendix 

 

1 

𝜼 ITEM SPHERE STEP GRIEWANK RASTRIGRIN 

 

 

 

𝜼

= 𝟎. 𝟓 

average 

iteration times 

82.27 85.73 32.42 16.2010 

variance 

when converge 

below to 0.001 or 

0.1 

0.063148 0.0139 0.0526 / 

variance 

after 1000(200) 

iteration times 

7.8777

× 10'7% 

1.4425

× 10'#% 

1.1824 × 10'6 0.9975 

 

 

 

𝜼

= 𝟏. 𝟎 

average 

iteration times 

84.25 86.53 32.40 15.512 

variance 

when converge 

below to 0.001 or 

0.1 

3.0192 38.2394 0.0683 / 

variance 

after 1000(200) 

iteration times 

2.8341

× 10'43 

3.0516

× 10'7 

1.6673 × 10'6 4.7283 

 

 

 

𝜼

= 𝟏. 𝟓 

average 

iteration times 

85.49 86.49 32.62 15.0878 

variance 

when converge 

below to 0.001 or 

0.1 

14.9765 316.2976 0.0659 / 
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variance 

after 1000(200) 

iteration times 

2.1556

× 10'43 

4.2282

× 10'7 

5.1482 × 10'6 11.8033 

 

 

 

𝜼

= 𝟐. 𝟎 

average 

iteration times 

86.93 87.04 32.51 15.1452 

variance 

when converge 

below to 0.001 or 

0.1 

37.7928 816.5862 0.0714 / 

variance 

after 1000(200) 

iteration times 

3.2382

× 10'51 

4.2101

× 10'4 

0.1095 19.0258 

 

 

 

𝜼

= 𝟐. 𝟓 

average 

iteration times 

85.78 86.04 32.16 15.3778 

variance 

when converge 

below to 0.001 or 

0.1 

79.3801 1456.895 0.0750 / 

variance 

after 1000(200) 

iteration times 

4.4783

× 10'13 

7.4567

× 10'4 

8.9659 × 10'6 31.9342 

 

 

 

𝜼

= 𝟑. 𝟎 

average 

iteration times 

85.80 86.09 32.11 14.9362 

variance 

when converge 

below to 0.001 or 

0.1 

124.9039 1873.732 0.0730 / 仅
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variance 

after 1000(200) 

iteration times 

2.3293

× 10'17 

7.5383

× 10'4 

7.0057 × 10'6 51.5823 

Table(1-1) the running conditions of various values of 𝜂(0.5~3.0) 

 
Figure(1-2) the average iteration times of 𝜂(1~25) 

 
Figure(1-3) the average variances when converge below to 0.001 or 0.1 of 𝜂(1~25) 
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Figure(1-4) the average variances after 1000 iteration times of 𝜂(1~25) 
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Figure(1-5) the average minimum value and average variances after 200 iteration times for Rastrigrin of 

𝜂(1~25) 
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Figure(1-6), the convergence speed of various values of 𝜂 
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Figure(1-7) the convergence of 3 test functions in various values of 𝜂 
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 0.3 0.6 0.9 1.2 1.5 1.8 

1 0.0012949 1.6041

× 10'4 

4.4033

× 10'3 

0.062499 0.14601 0.12472 

2 2.417

× 10'3 

1.1802

× 10'7 

6.5264

× 10'3 

0.057963 0.078264 0.11318 

3 0.0053041 1.8755

× 10'7 

2.0568

× 10'3 

0.086992 0.080173 0.19478 

4 5.1901

× 10'3 

2.277

× 10'1 

5.6277

× 10'3 

0.084089 0.088556 0.085695 

5 0.0016046 6.456

× 10'#% 

4.0918

× 10'3 

0.064591 0.10793 0.16543 

SA

MPLE 

SUM 

0.00896431 2.4751

× 10'1 

0.0022706 0.356061 0.501833 0.683805 

SA

MPLE 

MEAN 

0.00179286 4.9503

× 10'4 

4.5412

× 10'3 

0.0712122 0.100367 0.136761 

Table(2-1-2-1’) the running result of program* for Griewank 

 

2-2-1 

 0.

3 

0.

6 

0.9 1.2 1.5 1.8 

1 1.7772

× 10'3 

5.3164

× 10'2 

6.4696

× 10'2 

1.2224

× 10'3 

2.5530

× 10'3 

0.0016958 

2 1.8628

× 10'3 

1.0222

× 10'3 

2.0683

× 10'3 

1.3756

× 10'3 

2.8332

× 10'3 

0.0018950 

3 1.2334

× 10'3 

1.6922

× 10'2 

7.5491

× 10'2 

0.0010078 7.6053

× 10'3 

0.0014155 
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4 9.0429

× 10'2 

1.5162

× 10'2 

5.7082

× 10'3 

1.1975

× 10'3 

3.2181

× 10'3 

0.0034476 

5 2.9070

× 10'2 

7.5964

× 10'2 

1.3679

× 10'3 

1.5019

× 10'3 

9.0916

× 10'3 

0.0014146 

SAMP

LE SUM 

8.6846

× 10'3 

1.9506

× 10'3 

0.00105546 0.00153754 0.00253462 0.0098685 

SAMP

LE MEAN 

1.7369

× 10'3 

3.9010

× 10'2 

2.1109

× 10'3 

3.0751

× 10'3 

5.0692

× 10'3 

0.0019737 

Table(2-2-1-1) the running result of program* for Sphere 

 

2-2-2 

 0.3 0.6 0.9 1.2 1.5 1.8 

1 4.3721

× 10'5 

1.2300

× 10'2 

4.1752

× 10'2 

4.6944

× 10'2 

1.2267

× 10'3 

1.0669

× 10'3 

2 1.7415

× 10'2 

1.8235

× 10'2 

2.5218

× 10'2 

9.3278

× 10'2 

8.9004

× 10'2 

1.0098

× 10'3 

3 2.2207

× 10'2 

1.8470

× 10'2 

2.1060

× 10'2 

3.0316

× 10'2 

1.4308

× 10'3 

3.6658

× 10'3 

4 6.7572

× 10'5 

1.6948

× 10'2 

7.3658

× 10'2 

1.6191

× 10'2 

1.2259

× 10'3 

3.2529

× 10'3 

5 1.3753

× 10'2 

4.7548

× 10'2 

1.4000

× 10'2 

3.5994

× 10'2 

3.3163

× 10'3 

1.3219

× 10'3 

SAMPLE 

SUM 

6.4504

× 10'2 

1.1350

× 10'3 

1.7569

× 10'3 

2.2272

× 10'3 

8.0897

× 10'3 

0.0010318 

SAMPLE 

MEAN 

1.2901

× 10'2 

2.2700

× 10'2 

3.5138

× 10'2 

4.4545

× 10'2 

1.6180

× 10'3 

2.0637

× 10'3 

Table(2-2-2-1’) the running result of program* for Griewank 
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2-3-1 

 0.

3 

0.

6 

0.

9 

1.2 1.5 1.8 

1 1.006

× 10'3 

1.8634

× 10'2 

3.4151

× 10'2 

6.3917

× 10'2 

2.7404

× 10'3 

0.0022169 

2 8.9907

× 10'2 

1.3518

× 10'3 

4.7313

× 10'2 

3.6628

× 10'3 

0.002732 0.0033504 

3 4.4579

× 10'2 

2.7222

× 10'2 

6.7139

× 10'2 

4.2228

× 10'3 

0.0011308 0.0096311 

4 3.9816

× 10'2 

8.0877

× 10'2 

6.9826

× 10'2 

3.3470

× 10'3 

6.8168

× 10'3 

0.0017696 

5 3.6806

× 10'2 

3.2860

× 10'3 

1.6092

× 10'3 

2.2928

× 10'3 

0.0010177 0.0020468 

SAMPL

E SUM 

3.1171

× 10'3 

5.9051

× 10'3 

2.3452

× 10'3 

0.00141646 0.0058362 0.0190148 

SAMPL

E MEAN 

6.2342

× 10'2 

1.1810

× 10'3 

4.6904

× 10'2 

2.8329

× 10'3 

0.0011672 0.0038029 

Table(2-3-1-1) the running result of program* for Sphere 

 

2-3-2 

 0.3 0.6 0.9 1.2 1.5 1.8 

1 7.7216

× 10'5 

1.6864

× 10'2 

3.8373

× 10'2 

1.0743

× 10'3 

1.1636

× 10'3 

9.2858

× 10'3 

2 3.7280

× 10'2 

8.2666

× 10'2 

3.8869

× 10'2 

8.4031

× 10'2 

3.5272

× 10'3 

3.9516

× 10'3 

3 1.0579

× 10'2 

5.3732

× 10'2 

1.0804

× 10'3 

3.2744

× 10'2 

1.5675

× 10'3 

0.001019 
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4 1.6088

× 10'2 

2.3969

× 10'2 

1.4721

× 10'2 

4.5268

× 10'2 

1.8329

× 10'3 

0.0010383 

5 1.9421

× 10'2 

7.1276

× 10'5 

5.4692

× 10'2 

3.4366

× 10'2 

1.3393

× 10'3 

4.1852

× 10'3 

SAMPLE 

SUM 

9.1090

× 10'2 

1.8436

× 10'3 

2.5470

× 10'3 

3.0384

× 10'3 

9.4305

× 10'3 

0.0037996 

SAMPLE 

MEAN 

1.8218

× 10'2 

3.6872

× 10'2 

5.0939

× 10'2 

6.0768

× 10'2 

1.8861

× 10'3 

7.5991

× 10'3 

Table(2-3-2-1’) the running result of program* for Griewank 

 

2-4 

 0.3 0.

6 

0.9 1.2 1.5 1.8 SU

M 

MEAN 

0.2 0.058815 

 

0.040233 

 

0.01707 

3.9338

× 10'5 

5.6933

× 10'5 

4.8852

× 10'1 

3.0822

× 10'2 

1.9204

× 10'3 

9.1280

× 10'2 

1.8762 

 

1.8024 

 

1.3138 

1.8065 

 

2.0664 

 

1.4701 

1.8762 

 

2.0661 

 

1.4701 

15.86424 0.881347 

0.4 0.034997 

 

0.028996 

 

0.066247 

7.7237

× 10'4 

1.1219

× 10'1 

1.2838

× 10'4 

1.0120

× 10'3 

2.0222

× 10'2 

1.6910

× 10'3 

1.2784 

 

0.7744 

 

0.73024 

1.2477 

 

0.89292 

 

1.5290 

2.4816 

 

0.89292 

 

 

1.7055 

11.66321 0.64796 

0.6 0.080422 

 

0.051915 

 

2.2502

× 10'5 

2.5630

× 10'2 

7.5734

× 10'5 

4.8091

× 10'2 

1.1211 

 

1.2561 

 

1.5944 

 

1.7165 

 

2.7345 

 

2.6119 

 

15.01484 0.83416 
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0.041247 3.5050

× 10'1 

1.0594

× 10'2 

0.98958 0.73688 2.0802 

0.8 0.02092 

 

0.15174 

 

0.054809 

5.3524

× 10'1 

4.7816

× 10'#% 

1.4669

× 10'2 

1.1606

× 10'2 

2.7555

× 10'2 

8.1372

× 10'2 

0.064315 

 

0.19917 

 

0.38297 

0.094316 

 

1.5609 

 

1.4267 

1.9687 

 

1.9007 

 

1.9841 

9.82748 0.54597 

1.0 0.023028 

 

0.027039 

 

0.009571 

1.7440

× 10'5 

1.6064

× 10'2 

3.0003

× 10'5 

1.9485

× 10'3 

5.1985

× 10'3 

4.1863

× 10'2 

0.37114 

 

0.44487 

 

0.45858 

0.82969 

 

0.96194 

 

1.0068 

1.9951 

 

1.4944 

 

2.7448 

10.36774 0.57599 

1.2 0.045529 

 

0.011814 

 

0.02788 

1.3392

× 10'5 

1.0244

× 10'1 

5.1773

× 10'5 

1.3942

× 10'3 

1.6050

× 10'3 

1.9676

× 10'3 

0.28592 

 

0.41934 

 

0.57929 

0.99249 

 

0.64282 

 

0.90615 

1.6802 

 

2.5300 

 

2.0089 

10.13084 0.56282 

SUM 0.792272 8.1177

× 10'2 

 

0.002044 14.34782 21.48221 36.24392   

MEAN 0.044015 4.50891

× 10'5 

1.1359

× 10'3 

0.797101 1.193456 2.013551   

Table(2-4) the running result of program* (two-way ANOVA) for Sphere 
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𝜇A² = 0.611362362195, 𝜇A,² = 0.05176453825, 𝜇B² = 5.3532 × 10'3, 𝜇B2² =

8.0576 × 10'2, 𝜇C² = 0.00913456, 𝜇C2² = 1.8589 × 10'3 

𝑎A#² = −0.580143282195, 𝑎A$² = −0.611362029025, 𝑎A6² =

−0.606857602195, 𝑎A3² = 0.006387637805, 𝑎A2² = 0.762937637805, 𝑎A5² =

1.065037637805; 𝑎A2#² = −0.04997167825, 𝑎A2$² = −0.051764488747, 𝑎A26² =

−0.05131041825, 𝑎A23² = 0.01944766175, 𝑎A22² = 0.04860246175, 𝑎A25² =

0.08499646175; 

 𝑎B#² = −3.6163 × 10'3, 𝑎B$² = −4.9631 × 10'3, 𝑎B6² = −3.2423 × 10'3, 

𝑎B3² = 2.2781 × 10'3, 𝑎B2² = 2.8400 × 10'2, 𝑎B5² = 0.00143838; 𝑎B2#² =

6.7675 × 10'2, 𝑎B2$² = 5.7876 × 10'2, 𝑎B26² = 4.5438 × 10'2, 𝑎B23² =

3.6031 × 10'3, 𝑎B22² = 8.1224 × 10'2, 𝑎B25² = 1.2579 × 10'3; 

 𝑎C#² = −8.5111 × 10'3, 𝑎C$² = −7.9536 × 10'3, 𝑎C6² = −8.6655 × 10'3, 

𝑎C3² = 6.3017 × 10'3, 𝑎C2² = 2.5374 × 10'3, 𝑎C5² = 0.0028894; 𝑎C2#² =

−1.6767 × 10'3, 𝑎C2$² = −1.4902 × 10'3, 𝑎C26² = −1.3495 × 10'3, 𝑎C23² =

−1.2512 × 10'3, 𝑎C22² = 2.7200 × 10'5, 𝑎C25² = 5.7402 × 10'3. 

𝜎A²
$ = 0.062792, 𝜎A2²

$ = 0.014309; 

  𝜎B²
$ = 1.69535 × 10'2, 𝜎B2²

$ = 4.6109 × 10'1; 

  𝜎C²
$ = 2.0833 × 10'3, 𝜎C2 	² $ = 1.9689 × 10'5	. 

 

3-2 

Set 𝛼 = 0.1, 𝑡#'3%
(𝑓@) = 𝑡%.72(24) = 1.7109 

𝜇A: º0.6113623 ± 1.7109 ×
√0.062792

√5
» = [0.4992982,0.7234266] 

𝜇A2: º0.0517645 ± 1.7109 ×
√0.014309

√5
» = [0,0.14903245] 

𝜇B: º5.3532 × 10'3 ± 1.7109 ×
√1.69535 × 10'2

√5
» = [0,0.003685746] 

𝜇B22: º8.0576 × 10
'2 ± 1.7109 ×

√4.6109 × 10'1

√5
» = [0,6.0013 × 10'3] 
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𝜇C: º0.00913456 ± 1.7109 ×
√2.0833 × 10'3

√5
» = [0.0089751589,0.0092939611] 

𝜇C2: º1.8589 × 10'3 ± 1.7109 ×
√1.9689 × 10'5

√5
» = [0,0.0059512125] 

 

4 

Number Location Coordinate 

1 Mengzhuiwan 104.10236E , 30.67693N 

2 Shuangqiaozi 104.11259E , 30.65368N 

3 Bailianchi 104.14495E , 30.73159N 

4 Jianshe Road 104.07275E , 30.57899N 

5 Taoi Road 104.12218E, 30.68805N 

6 Fuqing Road 104.12220E, 30.68806N 

7 Erxian Bridge 104.13714E, 30.68958N 

8 Tiaodeng River 104.12599E, 30.66222N 

9 Wannianchang 104.14106E, 30.65184N 

10 Shuangshuinian 104.08005E, 30.71514N 

11 Shengdeng 104.11191E, 30.68805N 

12 Baohe 104.15237E, 30.66407N 

13 Qinglong (1) 104.11969E, 30.70961N 

14 Qinglong (2) 104.11206E, 30.70761N 

15 Longtan (1) 104.17110E , 30.71094N 

16 Longtan (2) 104.17906E , 30.71167N 

(17) Sichuan Jinyu Medical Laboratory 

Center 

104.17518E , 30.69329N 

(18) Chengdu Sixth People's Hospital 104.11468E , 30.67275N 

(19) Chengdu Chenghua District Center 

for Disease Control and Prevention 

104.11639E , 30.71449N 
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Program*（This example is for the inertia factor (𝜔) under Sphere） 

 
clear; 
clc; 
N=100;     
D=10;     
ger=100;  
c1=1.5; 
c2=1.5; 
w1=0.3; 
w2=0.6; 
w3=0.9; 
w4=1.2; 
w5=1.5; 
w6=1.8; 
eps=0.001;  
  
x=zeros(N,D); 
v=zeros(N,D); 
for i=1:N 
    for j=1:D 
        x(i,j)=randn;  
        v(i,j)=randn;   
    end 
end 
  
figure(1); 
for j=1:D 
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    if (rem(D,2)>0) 
        subplot((D+1)/2,2,j); 
    else 
        subplot(D/2,2,j); 
    end 
    plot(x(:,j),'b*'); 
    grid on; 
    xlabel('The particles'); 
    ylabel('initial position'); 
    tInfo=strcat(char(j+48),'dimension'); 
    if (j>9) 
        

tInfo=strcat(char(floor(j/10)+48),char(rem(j,10)+48),'dimension'); 
    end 
    title(tInfo); 
end 
  
figure(2); 
for j=1:D 
    if (rem(D,2)>0) 
        subplot((D+1)/2,2,j); 
    else 
        subplot(D/2,2,j); 
    end 
    plot(v(:,j),'b*'); 
    grid on; 
    xlabel('The particles'); 
    ylabel('initial velocity'); 
    tInfo=strcat(char(j+48),'dimension'); 
    if (j>9) 
        

tInfo=strcat(char(floor(j/10)+48),char(rem(j,10)+48),'dimension'); 
    end 
    title(tInfo); 
end 
figure(3); 
subplot(1,2,1); 
  
x1=x; 
v1=v; 
  
p1=x1; 
pbest1=ones(N,1); 
for i=1:N 
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    pbest1(i)=fitness(x1(i,:),D); 
end 

 
g1=1000*ones(1,D); 
gbest1=1000; 
for i=1:N 
    if (pbest1(i)<gbest1) 
        g1=p1(i,:); 
        gbest1=pbest1(i); 
    end 
end 
gb1=ones(1,ger); 
  
for i=1:ger 
    for j=1:N 
        if (fitness(x1(j,:),D)<pbest1(j)) 
            p1(j,:)=x1(j,:); 
            pbest1(j)=fitness(x1(j,:),D); 
        end 
        if (pbest1(j)<gbest1) 
            g1=p1(j,:); 
            gbest1=pbest1(j); 
        end 
        v1(j,:)=w1*v1(j,:)+c1*rand*(p1(j,:)-x1(j,:))+c2*rand*(g1-

x1(j,:)); 
        x1(j,:)=x1(j,:)+v1(j,:); 
    end 
    gb1(i)=gbest1; 
end 
plot(gb1); 
disp(['gb1:',num2str(gbest1)]); 
TempStr=sprintf('w=%g',w1); 
title(TempStr); 
xlabel('Iteration times'); 
ylabel('Fitness value'); 
  
%% function 
function result=fitness(x,D) 
sum=0; 
for i=1:D 
    sum=sum+x(i)^2; 
end 
result=sum; 
end 
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Program of Section IV 

 
clear 
clc 
close all 
clear global 
global para_v para_h para_X totle_num para_D 
para_D=[0 3.4 11 2.3 3.5 3.4 4.7 4 5.7 6 6.2 7.7 5.3 4.7 13 14 11 1.7 

6.7 
        3.4 0 13 3.1 5.2 4.7 5.9 1.9 2.8 11 5.6 4.7 8.1 7 11 12 9.7 

2.2 9.2 
        11 13 0 11 8.4 8.4 6.9 11 14 9.4 6.1 13 4.3 5.2 7.3 7.7 8.1 11 

4.3 
        2.3 3.1 11 0 1.5 1.5 2.7 2.7 4.3 6.5 4.2 5.1 5.3 4.2 9.1 9.2 

8.6 1.3 6.2 
        3.5 5.2 8.4 1.5 0 0.15 2 3.9 4.7 6.7 3.5 5.8 3.9 4.3 8.4 8.2 

8.6 2.5 5.5 
        3.4 4.7 8.4 1.5 0.15 0 2.1 4 4.8 6.5 3.6 5.7 4 4.2 8.4 8.1 9 

2.6 5.6 
        4.7 5.9 6.9 2.7 2 2.1 0 5.8 6.4 8.5 1.7 5.9 4.5 4.6 6 6.6 5.2 

4.6 4.9 
        4 1.9 11 2.7 3.9 4 5.8 0 4 8.9 5.6 5.4 8.1 6.9 10 11 8.6 2.6 

8.7 
        5.7 2.8 14 4.3 4.7 4.8 6.4 4 0 11.3 5.6 2.5 9.7 8.8 9.6 10.4 

8.4 4.8 12 
        6 11 9.4 6.5 6.7 6.5 8.5 8.9 11.3 0 12.1 15.3 5 4.4 13.7 14.7 

14 8.4 4.9 
        6.2 5.6 6.1 4.2 3.5 3.6 1.7 5.6 5.6 12.1 0 5.1 4.7 5.7 4.2 4.8 

3.9 4.9 5.5 
        7.7 4.7 13 5.1 5.8 5.7 5.9 5.4 2.5 15.3 5.1 0 8.1 8.4 8.5 9 

7.8 5.3 9.3 
        zeros(1,13) 1.2 8.2 9.2 8.1 6.3 1.1 
        zeros(1,14) 8.7 9.5 9.5 5.2 2.5 
        zeros(1,15) 1.5 3.7 9.4 8.2 
        zeros(1,16) 3.2 11.7 9 
        zeros(1,17) 9.9 9.1 
        zeros(1,18) 7.2 
        zeros(1,19)]; 
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error_1=0; 
error_index=[]; 
for i=1:size(para_D,1) 
    for j=1:size(para_D,2) 
        if para_D(i,j)==0&para_D(j,i)~=0 
            para_D(i,j)=para_D(j,i); 
        elseif para_D(i,j)~=0&para_D(j,i)==0 
            para_D(j,i)=para_D(i,j); 
        elseif para_D(i,j)~=para_D(j,i) 
            error_1=error_1+1; 
            error_index(end+1,:)=[i,j]; 
        end 
    end 
end 
para_v=0.5*60; 

para_h=3/60; 

para_X=[0.98,1.05,1.02]; 
totle_num=length(para_D)-3; 
sizepop=1000; 
dim=totle_num*2; 
ger=500; 
xlimit_max=ones(1,dim)*3-0.00001; 
xlimit_min=zeros(1,dim)+0.00001; 
 

vlimit_max=0.4*(xlimit_max-xlimit_min); 
vlimit_min =-1*vlimit_max; 

 
w=0.7; 
c1=1; 
c2=0.1; 

 
pop_x=zeros(dim,sizepop); 
pop_v=zeros(dim,sizepop); 
for i=1:dim 
    for j=1:sizepop 
        pop_x(i,j)=(xlimit_min(i)+(xlimit_max(i)-xlimit_min(i))*rand); 
        pop_v(i,j)=(vlimit_min(i)+(vlimit_max(i)-vlimit_min(i))*rand); 
    end 
end 
gbest=pop_x; 

 
for j=1:sizepop 
            fitness_gbest(j)=fun_1(pop_x(:,j)); 
end 
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zbest=pop_x(:,1); 
fitness_zbest=fitness_gbest(1); 
for j=1:sizepop 
    if fitness_gbest(j)<fitness_zbest 
        zbest=pop_x(:,j); 
        fitness_zbest=fitness_gbest(j); 
    end 
end 
iter=1; 

 
record_2=zeros(ger,1); 

 
T=2000; 
C_S=fitness_gbest; 
d_t=0.98; 
while iter<=ger 
      c1=1-0.6*(iter/ger); 
    fai=c1+c2; 
    w=2/abs(2-fai-(fai^2-4*fai)/2); 
    if iter>2 
        C_S=fitness_pop; 
    end 
    for j=1:sizepop 
        pop_v(:,j)=(w*pop_v(:,j)+c1*rand*(gbest(:,j)-

pop_x(:,j))+c2*rand*(zbest-pop_x(:,j))); 

 
             for i=1:dim 
            if  pop_v(i,j)>vlimit_max(i) 
                pop_v(i,j)=vlimit_max(i); 
            end 
            if  pop_v(i,j)<vlimit_min(i) 
                pop_v(i,j)=vlimit_min(i); 
            end 
        end 
        pop_x(:,j)=pop_x(:,j)+pop_v(:,j); 

 
               for i=1:dim 
            if pop_x(i,j)>xlimit_max(i) 
                pop_x(i,j)=xlimit_max(i); 
            end 
            if pop_x(i,j)<xlimit_min(i) 
                pop_x(i,j)=xlimit_min(i); 
            end 
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        end 
              if rand>0.75 
            pop_x(:,j)=(xlimit_min'+(xlimit_max'-

xlimit_min').*rand(dim,1)); 
        end 

 
            fitness_pop(j)=fun_1(pop_x(:,j)); 
              if fitness_pop(j)<fitness_gbest(j) 
            gbest(:,j)=pop_x(:,j); 
            fitness_gbest(j)=fitness_pop(j); 
        end 
        if fitness_gbest(j)<fitness_zbest 
            zbest=gbest(:,j); 
            fitness_zbest=fitness_gbest(j); 
        end 
          if iter>2&C_S(j)>fitness_gbest(j) 
            p=exp(-(C_S(j)-fitness_gbest(j)))/(iter*T); 
            if rand<(1-p) 
                temp_1=randperm(length(zbest),1); 
                pop_x(temp_1,j)=zbest(temp_1); 
            end 
        end 
    end 
    T=T*d_t; 

pop_x(:,1)=zbest+zbest.*(((ger-iter)/ger)+tan((rand(dim,1)-

1/2)*pi)+1); 

 
    record_2(iter)=fitness_zbest; 
    iter=iter+1; 
    disp(iter) 
    disp(fitness_zbest) 
end 
figure() 
plot(record_2,'LineWidth',1.5) 
xlabel('µü´ú´ÎÊý','FontSize',12,'FontWeight','bold') 
ylabel('Ä¿±êÖµ','FontSize',12,'FontWeight','bold') 
title('µü´úÇúÏß','FontSize',15,'FontWeight','bold') 
x=zbest; 
X=ceil(x(1:totle_num)); 
X_1=x(totle_num+1:end); 

 
for i=1:3 
    temp_index=find(X==i); 
    if length(temp_index)==0 
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        car_way(i,1)=0; 
    else 
        temp_X=sortrows([X_1(temp_index) temp_index],1); 
        car_way(i,1:length(temp_index))=temp_X(:,2)'; 
    end 
end 
record_t=[]; 
p_0=[17,18,19]; 
p_0_1=[17,18,19]; 
for i=1:3 
    t=0; 
    temp_index=car_way(i,:); 
    temp_index(temp_index==0)=[]; 
    if length(temp_index)>0 
        for j=1:length(temp_index) 
            t=t+para_D(temp_index(j),p_0(i))/para_v; 
            record_t(temp_index(j),1:3)=[i,t,t+para_h]; 
            t=t+para_h; 
            p_0(i)=temp_index(j); 
        end 
    end 
    t=t+para_D(p_0(i),p_0_1(i))/para_v; 
    final_t(i)=t; 
end 
y=sum(final_t.*para_X); 
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