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In this paper, we consider irreducible finite-dimensional representations of the
Drinfeld-Jimbo quantum group U, (gl,,) which are expressible in the Gelfand-Tsetlin
basis. Our first result is that as ¢ — 0, the leading asymptotics-of the Chevalley
generators of Uq(gl,,) under the representations give rise to.a gl -crystal structure.
Our second result is an interpretation of the known cactus group symmetry of.a‘gl,,-

crystal via simple involutions on the representations.
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1 Introduction and main results

Quantum groups were first formulated in physics, particularly by the Leningrad school,
from the inverse scattering method. The Drinfeld-Jimbo quantum groups U, (g), which are
deformations of the universal enveloping algebras of Lie algebras g, were introduced inde-
pendently by Drinfeld and Jimbo around 1985. In the past 20 years, numerous applications
in different branches of mathematics and mathematical physics have been found, such as
solvable lattice models in statistical mechanics, the theory of knot invariants, répresen-
tation theory of Lie algebras, topological quantum field theory, geometric-representation
theory, C*-algebras, and others.

The theory of crystal basis, also known as canonical basis, was introduced indepen-
dently by Kashiwara [3, 4] and Lusztig [5]. Apart from being apowerful combinatorial
and geometric tool in studying the representations of quantum’ groups and-the underly-
ing Lie algebras g, it is closely related to many mathematical subjects. ‘In-particular, a
g-crystal is a finite set, equipped with crystal operators, that models-a weight basis for a
representation of g, where the crystal operators indicate the leading-order behaviour of the
simple root vectors on the basis under the crystal limit ¢ — 0.in the' quantum group U, (g).

This paper provides an elementary derivation.of a gl, <crystal using the ¢ — 0 leading
asymptotics of a ¢g-family of representation of U, (gl,, ) on a vector space. The representa-
tion used here was introduced by Appel and Gautam [ 1], and since the ¢-family of repre-
sentation has rather explicit formulae, we compute-their ¢ — 0 leading asymptotics. Our
first main result is to properly characterize the.leading asymptotics, and to verify that it is
indeed a gl,,-crystal. Based on this new tealization of the crystals, our second main result
is to interpret the known complicated.cactus group action on a gl,,-crystal, introduced by

Berenstein and Kirillov{2], using simple involution symmetry on representations.

1.1 Quantum group

The Drinfeld-Jimbo quantum group U, (gl,,) is a unital associative algebra with generators
G5B, Fjswhere 1 <i <n,1 < j <n— 1, and relations:
e forcach1 <:1<n,1<j53<n—1,
¢lq =g Mg =1,
¢ EqT = ¢igT e By,

" Fiqg T = q gt Fy;
e foreach1 <i,j <n-—1,

qHz'*HHl —q i+Hi11

[ J] J q_q_1



e for|i — j| =1,
E?E; — (¢+ q " EE;E; + E;E} = 0,

F2Fy— (q+q ") FF;F, + FyF? = 0;

e and for |i — j| # 1,
[Eiij] = [FHFJ] = 0.

1.2 gl -crystals

As shown by Kashiwara [3, 4], ¢ in U, (gl,, ) is a parameter of temperature in the 2-dimensional
solvable model, and ¢ = 0 corresponds to the absolute temperature zero:” Because of the
special nature of the absolute temperature zero, we considereda connection-to.crystal
bases. The combinatorial structure of a crystal base is encoded by a gl ,-crystal,and inves-
tigation showed that the representations of U, (gl,,) have crystal bases at g =0.

Let P = {a;V1 + -+ + a,V, | a; € Z} denote the lattice spanned by n independent
vectors V1, ..., V,,, where (V;, V;) := ¢,; are standard.inner products: Thus,

Definition 1.1. A gl -crystal is a finite set 5.along with maps

wt : B P,
E,F, 2B —>BU{0}niel,
gih oy N'B = LI {—o0}, i €1,

such that forall b,/ € Band s € I,
(1) Ey(b) = V¥ ifand only if b = F(b'), in which case

E(b)= 0.

Here wtis the weight map, and E;, F; are Kashiwara operators or crystal operators.

1.3 Representation of quantum groups in the Gelfand-Tsetlin basis

A Gelfand-Tsetlin pattern A is a collection of numbers {\, , }1<,<.<, satisfying the inter-

lacing conditions
)‘i+1,j+1 — )\i,j €Z" and /\i,j — )‘H-Lj eZ* forz’,j S Z+,1 <7 <0<, (1)
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as shown in Figure 1.

Figure 1: The Gelfand-Tsetlin pattern A

Given any n-tuple A = (A, ..., \,) where \; > --- > ), let us‘consider-the vector

space L(\) spanned by the symbols {,, where A are all possible’ Gelfand-Tsetlin patterns

with fixed A, ;,41-; = A\; where i = 1, ..., n. Then

Theorem 1.2. [1] ¢ is a representation of the algebra U,(gl,,) on the.vector space L(\)

defined by
NN = T A S I Gt
= c oy
P {Lk ¢ —qt = HClGJr( (k) C(k>G+(C(k k)_h)
i k Hk L= <<—(k k 1) ) k+1 ( CkaFl) + g) )
¢ (Fr) = - Z - B;
= e (c““) cle (dk ¢ —n)
e(Hy) = i,
where h is a real wiimber'such.that.q =¢"/?, G*(x) are any functions such that
G~ (z) = G"(-x),
x/2 _ —x/2
G (2)G (@) = ————,
x
and hy, Ci(k), agk), @(k) € End(L(\)) are operators acting on the basis 5 of L(\),
k
by -En = (ZAM ZM 1 )&\, )
i=1
GV ey = (kW) =i+ (k+1)/2)é, (3)
o g, = I, z;sz(@(k) —¢" Tk l#z(C(k) W 1) €ris @)
i - " SA+Ok k414
B ] iy (ST L B
B ey = |- M- 1l¢z(C(k) M) @Y - ¢Y 1) s 5)
’ LAY =G D -Gy T
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Here, the pattern \ % 0y ; is obtained from the pattern A\ by replacing Ay, ; with A\, ; £ 1.

Note that A\, ;11— is seen as a function on the set of patterns A. In the following,
Ak k+1—; 18 understood as Ay ;4+1—;(A) for the sake of simplicity.

1.4 gl -crystals arising from the 7 — —oo asymptotics of

In this paper, we studied the i — —oo asymptotics of the representation (. Our first main
result shows that

Theorem 1.3. For each k = 1,...,n — 1, there exist operators E, and E}, acting on the

basis vectors {&z} of L(N), such that for any &, there exist two constants ¢y, ¢ and

Jdim e Mo(By) 6y = Ei(8a); (6)
nglflooeczh@(Fk)fA = Fi(en); (7)

Furthermore, let Pz (\) denote the set of all basis vectors & inthe vector space L(\).
Then, the finite set Pg,(\) with the maps wt'and Ey, Fy, e op fork =1,...n— 1, isa
gl -crystal. Here

Nk K1
wt (Ea) =20 (Z Aki = D% /\k—u) Vi, (8)
=1 i=1

k=1 \i=
and
er(€r) = ‘max{j € Zxo | Bl(&) # 0}, ©)
Op(én) & max{j € Zso | F (&) # 0}, (10)

1.5 _Cactus group actions on gl,-crystals
Definition 1.4. The Cactus group Cact,, is generated by elements 0,5, 1 <7 < j < n,
subject to the relations
o =1 if1<i<j<n,
00k = Okl04j lfj < ]{Z, (11)
Oij0K0i = Oipjlivj—k i< k<l <.

Leto; :==o0y,41forl <¢<n-—1,s0 af = 1. Also, the elements o1, ..., 0,,_1 generate

the Cactus group.

In [2], Berenstein and Kirillov found an action of the cactus group on the set of Gelfand-

Tsetlin patterns, so



Theorem 1.5. [2] Let us define the actions t; for j = 1,...,n — 1 on the set of Gelfand-
Tsetlin patterns

ti(Aei) = i Jork # (12)
tj()‘j,i) = min()\j-i-l,i—f—la >\j—17i) + maX()\j—i-l,ia /\j—u—l) - )\jm (13)
where \jo = —o0 and \j ;41 = +00. Then q; = titotitstaty...tjt;_1...t1 defines an

action of the cactus group Cact,, on the finite set of Gelfand-Tsetlin patterns.

Since the set of patterns and the set of basis vectors have a one-to-one correspondence,
we will not distinguish between a pattern A and its corresponding basis vector &, in the
rest of this paper. Similarly, we will not distinguish between the operators on the patterns
{A} and on their corresponding basis vectors {{s}. For example, we can think'of ¢; as
elements in End(L()\)), defined by

t;(€n) == &, ny for any basis‘vector 4 € L(N),

where the numbers of the pattern ¢;(/A) are given-on the right-hand sides of (12) and (13).
Thus, equivalent to Theorem 1.5, q; := t{totitstoty .. .tilsm1u by fori = 1,...,n — 1 defines
an action of the cactus group Clact,, onthe set Pgyz(A) of basis vectors.

1.6 The lift of cactus group actions on the representations

Motivated by Theorem 1.3, we introduce

Definition 1.6. Given any continuous family of representation p : U,(gl,,) — End(L()))
for ¢ = es € (0;00),if for each'k = 1,...,n — 1, there exist operators E,’j and ka acting
on the basis vectors {{, } of L(\), such that for any &, there exist two constants ¢y, ¢, and

hEereclhp(Ek).fA = Ef(), (14)
ngr_rloo662hp(F’f)'5A = Fl(&), (15)

then we-define the operators Lead(p(E})) := Ef and Lead(p(F},)) := FY as the leading
asymptotics operators.

Theorem 1.7. The maps

O (E)) == —p(Fh—j) forj=1,..,n—1,
F;)=—p(E,—;) forj=1,.,n—1,
0" (H;) = —p(Hpy1-1) fori=1,..n,



define a representation of U,(gl,,) on the vector space L(\). Furthermore, the leading
asymptotics operators Lead (" (E;)) and Lead (o™ (F})) exist, and we have

Lead(¢(Ej)) 0 gn-1 = Gn-1 0 Lead(¢"(E})), (16)
Lead(p(F})) 0 o1 = gu-10 Lead(p"(Fy)). (17)

2 The proof of Theorem 1.3

2.1 The leading asymptotics of ©(E}) and ¢(F})

z/2 _ p—x/2
G () = | — 5
T

which can be easily verified to satisfy

Consider the functions

G (x) = G{~w),

ea:/? . e—x/2

G (2)G (x) =

a

By Theorem 1.2, we have an explicit representation-of Uy (gl,,) on the vector space L(\).
Thus, let us directly compute the leading asymptoties of the actions of ¢(E}), o(F) on
the basis vector &,.

Lemma 2.1. Fori =1, ., k,

1 IEGT (¢ gD h) e ()

4 lim - In FSasa
h=—co h Hezri1- G* (glglfl—)l i — Ge ) G+ (C(-i'l L - h) -
k—1 k41
_(ZAk—lj Z)\k r; + Z )‘k—l—lj Z/\k+11_2 Z Akﬂr?ZA’”Jrl)’
gJ=i j=i+1 Jj=i+1
and

4 1i ! 1 =i G (Clgli)lfi — ¢ D+ g) [t Gt (CkH .- Cka + h)
P + (¢ + (R " “EN—b1.
oo @ (@)@ (8

h——o00
k—1 k+1
|V (ZA,C_U Z)\k it > N1 — ZAMJ—z Z Ak]+22)\k]+1).
Jj=t

Jj=i+1 Jj=i+1

. hx /2 _o—hx/2

Proof. Since G*(z) = /-,
1 ehe/2 _ o—hx/2

1
4 lim ﬁlnGi(hx):Zl lim %ln

h——o00 h——o0 hx

— x|



Thus, by the defining identities (3), (4), (5), direct computation yields

1 IFiar (Ci(k) — (U %) LGt (C (k) £k+1) _ g)

4 lim —1In Enss »
e @G @ ]
k-1 k+1
== | Mestimi — 0 — Me—1 e +a— ‘ — > Nektioi — & — Nt hgo—b + b — ‘

a=1 b=1

k k
Y Mept1-i — &= Megrr—c + | + D | Aups1—i — & — Aggg1—c + ¢ — 1]

c=1 c=1
i—1 1 k-1 1
=-> (>\k1,ka —a— Appp1—i i+ 2) -3 ()\k,kJrli — 0= N1 kg A 0 — §>
a=1 a=1
i 1 k+1 1
-y (Ak+1,k+2—b —b— Mgy +i+ ) - > <)\k:,k:+1—i = 1~ N1 pfo—pt b — >
b=1 2 b= i+1 2
i—1 1
+2>° <>\k,k+1—c —C— Ayl t1— > +2 Z (Ak,k-&-l—i — b= Agkg1—c +C— 2)
c=1 c=i+1
k—i k—1 k+1 k14
=D Mg = DL Mg — DL Ak Z Mty +2 Z Ak — QZAM
j=1 j=k—1+1 j=k+2—1 Jj=k+2—1
where the second identity follows from the‘interlacing conditions (1). Similarly,
_ k . (k+1)
R = Ten (<;£+>1 ;20 1 ﬁ) PG (G g+ h)
4 Em ﬁln N *) ) €A Sk ktr1—i
- [ethi14 G (Ck+1 —i — Ge ) G (C k+1—i — Ge h)
k—i k—1 k+1 k1—i
=D Ny Dl MmN Z Akt + 2 Z Akj — 2 Z Akj —
7j=1 J=k—1%1 J=k+2=3 Jj=k+2—1i
[ ]
To simplify, we introduce
Definition 2.2. Fori = 1;..., k, define function g, (k, ) as
k—1 k+1 i i—1
i) = Z Ap—1,5 — Z Ak—1,5 + Z Akt1,5 — Z Akt1,5 — 2 Z Ak,j+2 Z Ak + 1.
Jj=i Jj=i+1 Jj=1 Jj=i+1 Jj=1

The function ga (k, 7) is a linear combination of the numbers in rows k£ + 1, k, k — 1 of
A, where the sign of each number is determined by its position relative to A ;, as shown
in-Figure 2.
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Figure 2: A graphical representation of g, (k, i) (Red:+; Blue:—)

Proposition 2.3. If is the only index such that g (k,l) is maximized:

ga(k, 1) = max{gp(k,k),...,ga(k, 1)},

then
hE{noo eﬁ'gA(k’l)/490(Ek) : gA 0N €A+6kl7 (18)
hEIPOO eth(k,l)/ZlgO(Fk) . 5/\ |y éA*f;kl' (19)

Proof. By Theorem 1.2 and Lemma 2.15as'h — —oo, we have

k .
@(Ek)gj\ N Z:l efth(k,z)/4€A+6k“

- | (20)
O p)én — 3 eoakD/Ag, o
i=1
If ga(k,i) < ga(k, j), then as i — ~00,
—higa (ki) /4
e PRI hantea-onid @1

e_th(kvj)/4

Therefore; the identities'(18) and (19) follow from (20) and the assumption that [ is the
only/index such that g (k, ) is maximized. m

Motivated by the above proposition, let us define the function g, where k = 1, ..., n—
1, ‘on the finite set Pz () as

gr(N) = max{ga(k,k),...,ga(k, 1)}

Definition 2.4. If there only exists one index /;, such that g (k,lx) = gx(A) for k =
1,...,n — 1, then a pattern A € Pz () is referred to as generic. Then, the leading asymp-
totics of ¢(F}) and (F}) given in Proposition 2.3 define operators Ej, and F}, on the set



of generic patterns as

Ep(€a) = Eatony, (22)
Fe(€a) = &a—spy, - (23)

2.2 Extensions of the operators £, I}, to the whole set P, ()\)
Consider the difference between gy (k,7) and ga(k, i+ 1):
gA(k,Z' + 1) - gA<k, ’L) — _2)\k—1,i + 2)\k’z + 2)\k’i+1 - 2)\k+17i+1.

Thus, ga(k,i + 1) = gr(A) > ga(k,i) only if A\g; + Apir1 > Aelii + Apr1ifre Also,
if gA(k’,Z) < gk(A), then gA(k‘,Z) S gk(A) — 2, because /\k,z'+1 7 )\k—l—l,i—f—l S YAl and
Me—1; — Mo € ZT. When either gp(k,i + 1) = gix(A) orgy (k7)) = gr(A), consider the

effects of E), and F}, on the pattern A, as shown in Figure 3.

Ak+l, i+1

Ak i

A1, i+1

Ak, i

Lok, 41

Ak

(a) The effect of Ej, when ga(k, 7+ 1) = gu(A)

Ak+1, i+1

;-k,r'

;ﬁk, i+l

Ag1,i

(c)(Theveffect of Fj, when gy (k,i 4+ 1) = gr(A)

Akl i

(b) The effect of Ej, when g (k, 1) = gr(A)

Ak+1, i+l

Ak, i+

Ak,

(d) The effect of F}, when g (ki) = gi(A)

Figure 3: The effects of Ej;, F}, on the pattern A (the number line +— goes from right to

left)

Suppose that gx (k, ) = ga(k,y) = gr(A) forsome z,y € ZT, 1 <z <y < k.
Thus, consider the constituent patterns A; = A + 0y, and Ay = A + &, of Ek(ﬁ A)-



For both A and A,

9A1(kay) :g/\(k‘,y), gA1(k’x) :g/\(k7$) -2 = 9A1(kay) >g/\1(k7x)v
90k y) = ga(ky) +2, gn,(ky) = galky) = gn(k,y) > gas (K, @),
50 Ej(€x,) and FE(€y,) will move (+0y, or some other numbers) together. Thus, to
maintain stability, let Ey(€y) = &ats,, where [ is the largest index such that gy (k. 1) is
maximized.

Similarly, consider the constituent patterns As = A — 05, and Ay = A=0;, of Fiéa.
For both A; and A4,

g/\s(kv (ﬂ) = g/\(kv (ﬂ) +2, gAa(kv Z/) = 9A<k7 Z/) - gA3(k’ $) > gA3(/€,y),

gl\4(k7x) = gA(k,l’), g/\4<k7y) = g/\(k7y) —2 - gl\4(k7x) > 9A4(/€>?/)7

SO Fk(g A5) and Fk(f A,) Will move (—dj ., or some other numbers) together. Thus, to main-
tain stability, let Fk(é A) = &a-s,, Where 7 is the-smallest index such that g (k,r) is
maximized.

Therefore, for the sake of stability,

Definition 2.5. Extend the operators givenin Definition 2.4 to the whole set Pgz()\) as

Er(éx) = &a+s,,» where [is the largest index such that ga (K, [) is maximized,

Fr(én) = &as,,, wherew is the smallest index such that g, (k, r) is maximized.

2.3 The datum (Pgz(\) =&}, wt, Ei, ), €1, ¢1) is a gl -crystal

Recall that F),(and Fj, are given in Definition 2.5, and ¢, ¢; and wt are given by

Eu€n) = max{j € Zso | E{(&x) # 0},
du(€r) = max{j € Zso | FL(&) # 0},

n k k—1
wt (£p) = Z < Ak — Z )\ku) Vi
k=1 \i=1 i=1

Then, we'will prove that they satisfy the conditions (1) and (2) in Definition 1.1.

2.4 The proof of Condition (1) in Definition 1.1

For pattern X, consider a pattern Y such that & = E’k(f‘ x). Letl € Z*,1 <1 < k be the
largest index where gx (k, ) is maximized, so yx; = xx; + 1. Thus, gy (k,[) = gx(k,1),
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and fori =1,....k,i # [,

ki) 12 it >
gy(k,l): .
gx (ki) —2 ifi<l.

Also,

gx(kf,l) <gX(k7l) 1fl>l7 — gX<kal)+2§gX(kal) 1fZ>l,
gX(k7Z) ng(k?,l) 1fZ<l7 gX<k7Z)_2<gX(k7l) 1f@<l7
SO
gy (k,1) = gx(k,i) + 2 < gx(k, 1) = gy (k, 1) ifi >4,
gy(k,@) = gx(kﬁ,Z) —2< gx(l{?,l) = gy(l{?,l) ifs < [.
Thus, i = [ is the smallest index where gy (k, ) is maximized, so Fi.(&y)= Ex.
Similarly, consider a pattern Z such that Fk(f 7) =&x. Letr €Z,1 < r < k be the

smallest index where g (k, r) is maximised, so xj » =% . — 1. Thus, gx (k,r) = gz(k,7),
andfori=1,.... ki #r,

gX(kv Z) 7

gz(k, i) — 2. ifi> 7,
gz(k,i) 42 ifi <.

gz(k,i) < gz(kyr) sifi >, gz(k,i) —2 < gy(k,r) ifi>r,
2
' gz(k,i) +2 < gz(k,r) ifi<r,

SO

gx(k, i) ="gz(k,i) —2 < gz(k,7) = gx(k,7) ifi>r,
gx (k1) = gz(k,i) + 2 < gz(k,r) = gx(k,r) ifi<r.

Thus;y ¢ = r is the largest index where gx (k, 7) is maximized, so Ek(g x) =&z
Both i = [ and i = r are the largest index where gx (k, 7) is maximized, so ! = r. Thus,
Ykl = Try +1= T, +1= Zlrs SO Y = 7. Therefore, Ek(fX) = fy < Fk(fy) = gx.

2.5 The proof of Condition (2) in Definition 1.1
First, by the definition of wt(&,) given in (8),
k k+1

k-1
(Wt (€a), Ve = Vis1) = 2D Xei — > Nemti — D Mo
=1 =1

=1

11



Then, let )‘i,O = —ooand /\i,i—i-l = 4oofori = 1, .., n, and let T; = min()\k+17j+1, )\k_lv.j)

and Yj+1 = HlaX()\k+1jj+1, )\kfl,j) fOI‘j = O, ceny k. Since T + Yj+1 = )\k+1,j+1 + )\kfljj,

gA<k7j + 1) - gA<k7])
=2(=Xo—1j + My + Mejr1 — Met1,j41)
=2((Mkjrr = yie1) — (05— M)

Also, Mgt j41— Ak Mejr1— -1, € 7" and Akj1 = Akt 1j415 Ae—1,5 — Ak j € Z*, so
Ao j+1—Yj+1 > landz;— A, ; > 1. Thus, if A\, ; = x;—1, then ga (k, j+1)=gna(k;j) > 0,
SO Ek(&\) = 0 if and only if ga(k, k) = gx(A) and Ay = Agt1 k43— 1. Similarly, if
Miji1 =y + 1, then ga(k, j +1) — ga(k, ) < 0,50 Fi.(€4) = 0 onlyifgu(k, 1) = gi(A)
and \g1 = A\py1g + 1

Let [; be the largest index such that g, (k, [1) = gx(A), and letr; be the smallest index
such that gy (k, 1) = gr(A). Fori € Z*, let ;1 € [k, [{) be the largest/index such that

g/\(ka li-i—l) = max{gl\(k7 k)) "-79A(k7 lz + 1)}7

and let 7,41 € (r;, 1] be the smallest index.such that

gA(k:7Ti+1) — maX{gA(k:7Ti "N 1)7 "'agA(kv 1)}

Thus, let XU+Y be the pattern such that&x 1) = Fi(Ex0)), where X(© = A, Con-

sider row k of pattern X (/): :):,(f,)g, Y, $,(j%, x,(j%, and row k of pattern X +1): gs,g,f:l), - x,(fjfl)

Ifx,(j;:l) = x,(jl) + 1, then for.t' = 1, <.k,

gX(j)(kJ,t) +2 ift > lz‘,
gxtnk,t) = § gxo) (K, 1) ift =1,
9x ) (k,t) -2 ift< li,

0.9z (k, li41)'= gz(k,1;) for a pattern Z such that £, = Ek(gx(”(k’li)‘gxu‘)(k’li+1))/2(§x<]~)).

Since [,,,, exists if [, < k and m is finite, [,, = k for some m € Z*, so

1 m—1
e6(6A) = Mot 1kl — Ak + 3 > (QA(]C, li) — ga(k, li—i—l))
=1
1
= i(gk(A) — ga(k, /f)) — Ak + Mot 1ot

Similarly, let Y U+1) be the pattern such that £y 1) = Fi(&y()), where Y(© = A, Con-

sider row k of pattern Y (7): y,i{,l, s y,(f%, y'9) and row k of pattern Y U+ y,(f;,jl), s y,(ffl)

)
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Ify;iff,.” = y,gj) + 1,thenfort =1, ..., k,

T4

gy (k,t) +2 ift > r;,
gy (k,t) = gy (k,t) ift =r;,
gy (k,t) —2 ift <y,

~ i (ki) — NGES
50 g (k, 7i41) = g7 (k,r;) forapattern Z such that &, = £,/ "m0 Bre) e

Since . exists if r,,, > 1 and m is finite, r,,, = 1 for some m € Z™, so
m+1

m—1

1
<Z5k(fA) = )\m - )\k+1,1 + 5 Z (QA(/ﬁﬁ) - gA(ka Ti+1))
i=1
1
= 5(%(/\) —ga(k, 1)) + A1 — Mg

Therefore,

1
oK (Ep) — ek (Ep) = 5(91&(1@ k) — ga(k, 1)) + Xen + Mok = M1 — Mkt
k1

k k-1
=23 i — Z N1 =) Mot 1y
i=1 = =1

50 ¢k (§a) — €k (§a) = (Wt (€a) s Vi = Voora).

3 The proof of Theorem 1.7

Recall that for ¢ ="1;...,m — 1, we'have defined action ¢; on the set of patterns A (equiva-
lently on the set P;z(\) of basis'vectors &, ):

ti(Arj) =Ny for k # 4,
ti(Nij) =min( N1 1, Aic1j) + max(Niy1j, Aim1jo1) — A
Before giving a proof of Theorem 1.7, let us study the commutative relations between

tw, qr and Ej,ﬁj.

3.1 - The commutative relation between ¢; and Ej

In this subsection, we prove that

Proposition 3.1. The operators satisfy

th1 Extp 1 = te By 1ty

13



Proof. For k = 2,...,n — 1, consider rows k + 1, k. k — 1, k — 2 of pattern A, as shown in
Figure 4.

Figure 4: Rows k + 1, k, k — 1,k — 2 of the pattern A

In the following, we will compute t, Ej,_1t;(£5) and t,_1 Extil (€4 respectively, and
then show that the results coincide.
Step One: the computation of tkEk,ltk(g A)

First, consider ¢ (). Let Z;; be the pattern-such that §7, =’ 1(a), as shown
in Figure 5. For j = 1,...,k, let 3; = min(aj+1,¢;) and v; =-max(a;,c;j_1). Thus,

Vi+1 = max(aj41, ), 80 B + i1 = a4 £ G

Figure 5: Rows £ + 1,k, k — 1,k — 2 of the pattern Zj, ;

Second, consider Ek_ltk(éA), as shown in Figure 6. Let: € Z7,1 < i < k — 1 be the

largestindex where gz, | (k — 1,1) is maximised, so ¢; = ¢; + 1 and ¢; = ¢; for j # i.

Figure 6: Rows k& + 1,k, k — 1, k — 2 of the pattern of Ek_ltk(gA)
Let 3} = min(a;j1,¢j) and 7} = max(a;,c;_;).
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« If j # 4, then 8 = B; and v}, | = ;11

s Ifaip1 >cithen B =c,=c;+1=p;+1and v, | = aiy1 = Vit
s Ifaj <c,then 8] = a4 = Biand v, = ¢ =¢; + 1=y + 1.
Third, consider tkEk,ltk(f A)»> as shown in Figure 7.

o+ (B —B) . bt (Bi—PB) b+ (B B)
+(v — ) +(75 —72) +(n—m)

Figure 7: Row k of the pattern of ¢, Ej,_1t;(£)

Let X be the pattern such that £ = tkEk_ltk(ﬁA), SO

Ty =¢ forj=1,.. k-1,

Tryg = Mg + (B = B;) + () — ) oforj= 1, Lk

Step Two: the computation of tk_lEktk_l(fA)
First, consider #_1({a). Let Zj o be the pattern such that&y, , = tx_1(a), as shown
in Figure 8. For j = 1,...,k — 1, let n;»= min(b;41, d;) and 6; = max(b;,d;_1). Thus,

041 = max(bji1, d;), 0 j + 011 = bjsr+ ds.

Figure 87 Rows k£ + 1,k, k — 1, k — 2 of the pattern Zj, -

Second, consider Ektk,l(@\), as shown in Figure 9. Leti € Z7,1 < i < k be the
largest index where g7, ,(k, i) is maximised, so b; = b; + 1 and b; = b; for j # .

Figure 9: Rows k + 1,k, k — 1, k — 2 of the pattern ofEktk_l(fA)
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Let 7, = min(b}, |, d;) and 0; = max(b’;, d;_1).
« Ifj #4,thenn; =n;and 0, , = 0;,1.
* Ifbiy1 >di,thenn =d; =n;and 0, =0}, = b1 +1 =041 + 1.
o Ifbiy <dj, thenn; =0, =b1+1=mn+1land 0, =d; = 0;.
Third, consider tk_lﬁktk_l(f A ), as shown in Figure 10.

G+ Uy —m—) . etmM—m) a+®m—mnm)
+(0)—y — Ok-1) +(03 — 0) +(01 — 61)

Figure 10: Row k£ — 1 of the pattern of tk_lEktk_l(ﬁA)

Let Y be the pattern such that & = tk_lEktk_l(fA), SO

Y15 = Me—15 + (0 —m5) + (0 = O) A forg =1, k=1,
Yy =b; forj=1,.. k.

Step Three: X =Y
Form =1, ...k, let

k+1 m k m k—1 m—1 k—2 m—1
Si(k,m) = > a; =Y ay—"JL b A0 Do+ Yoo+ D di— D dj,
j=m+1 Jj=1 Jj=m+1 Jj=1 Jj=m Jj=1 Jj=m Jj=1
k+1 m k m—1 k—1 m—1 k—2 -2
Sz(k:,m): Z aj—Zaj—ij+ij—ch+ch+ Z dj— dj.
j=m+1 Jj=1 J=m j=1 j=m j=1 j=m—1 j=1
Fori=1, . sk—1andj=1,.. k,
Sl(k’, Z) ifai+1 > ¢4,

0z,1(k = 1,i) = max{Si(k,q), S2(k,i + 1)} =
So(k,i+1) ifai <,

Si(k,j) ifb; > dj,
k,j

ng,2(kaj) = maX{Sl(kaj)a‘SQ(kaj)} = ' . .
SQ( , ) lfbj < dj—l-

Also, d,—1 = oo and dy = —00, 50 gz, ,(k, k) = Sa(k, k) and gz, ,(k,1) = Si(k, 1).

For the pattern X, consider/ € Z*,1 <[ < k—1suchthatz,_;; = A\p_1;+ 1. Thus,
9z,,(k—1,1) ismaximized, so gz, , (k—1,1) = max{gz, ,(k—1,k—1),...,9z,,(k—1,1)}.
For the pattern Y, consider r € Z*,1 < r < k such that y,, = A, + 1. Thus, 974 (k,r)

is maximized, so gz, ,(k,7) = max{gz,,(k, k), ..., gz, ,(k,1)}.

» Ifa; 1 > ¢, then Bl/ — B =1,s0 Tpg = )\k,l + 1.
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« fary < g thenyy — Y41 = 1,80 T 01 = Agga + 1
o Ifb, > d,_q,thenf, — 0, = 1,50 yp_1, = Np—1, + L.
« Ifb, < d,_y,thenn,_; —n,—1 = 1,50 Yp_1,—1 = Ag—1,—1 + L.

Also,

9z, (k= 1,1) =max{gz, (k- 1,k —1),...,9z,,(k —1,1)}
=max{S;(k,k — 1), S2(k, k), ..., S1(k, 1), So(k,2)}
— max{S(k, k), S (k, k — 1), Sa(k, k — 1), o0, S1(k, 2), Sk, 2), S1(%/ 1)}
:max{gzm(k:, k), ..., 92, (K, 1)} = 92z, (k,7).

* If a;41 > ¢, then Si(1) is the maximum of S (7), Sa(g)for i = 1,05k 1,5 =
2,....,k,sor=1land b, > d,_1. Letz =1 =r,sol =2, r = z Thus,

Tp—1. = Ag—1- + 1 Yk, = Azt Tpe 17 = Yh—1,2

Tpo =Mzt 1 Ypo1, =N +1 Tho = Yk,z

» Ifa; 1 < ¢, then Sy(I + 1) is themaximum of Sy (z), So(j) fori =1,....k— 1,5 =
2,....,k,sor=14+1and b, <d,_1~Letz=1l=r—1,s0l =z, =z + 1. Thus,

Tp1: = M1 2 10 Yo = Mozyr + 1 Th—1, = Yh—1,2

, .
Tk z41 = )\k,z—f—l +1 Yk~1,2— )\k’—l,z +1 LTk,z4+1 = Yk,z+1

Therefore, X = ¥, s0 tkEk,ltk(ﬁ'A) = tk,lEktk,l(f’A) forany {yand k =2, ..., n—1.

3.2<_The commutative relation between ¢;, and £, F;

By Theorem .5, txtx(A) = A and ¢t (En) = &, SO ity = 1. Because ¢y, only affects row
k of A, if |’l y 3 j| # 1, then tzt] = tjtz because tlt]<A> = t]tl(A> and tltj (éA) = t]tl(g[\)

Form =1,....n—1,letp,, = t,t,m_1...tat1, SO

tinPm = tinlmtm—1..tot1 =t 1. b2ty = D1,
Gm = titaty.. .t tots = P1P2--Dm—1Pm = Gm—1Pm-

The following lemma will be used in the proof of Proposition 3.3.

Lemma 3.2. We have that q,,q,, = 1 for all m € 7.
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Proof. When m =1 orm = 2, ¢,,q,, = 1:

Q1q1 = p1ip1 = tity = 1,
qoq2 = tthtltthtl = tltthtl = tltl =1.

By induction, suppose that ¢,,q,, = 1 for m < r, where r € Z*,r > 3. Then, for
1=3,...,T,

gr—1( pl(Hp]) = = g <Hpg) (jf[:ipj) :"'ZQT—ltr(:ljjpj)pm

because

qT*1<t’l’"'ti> (ﬁ pj) (Hp]) = gr- 1 z+1 (H p_]) Di (ﬁ pj)
=qr—1(tr.. . tis1 (H p;) iDi (_H pj) = @1ty i) (lepg) Di-1 (_’” Pj)
r (i+1)—2 r
=qr—1(t,..tip1 (H pg> ( II » ) =.Grag(bne (1)) ( 11 pj) ( pj)-
j=it1 j=1 j=(i+1)

Thus, when m = r,

ImGm = GrGr = (Gr—1Pr) (P1P2---Dr) = Gr—1 (Lo L3lat 1) (1) (tat1) (P3---Dr)
= CIr—l(t tgtg)(tgtl)(pgpr) = QT—l(t tg)(tl)(pgpr)

st (T {117) = a0 (T ) (1)

= Q1 teP1-Pr—2Pe = Qr—1P1---Pr—2teDr = Qr_1P1---Pr—2Pr—1 = Qr-1Gr—1 = L.
Therefore, ¢,,,q,, =t forallm € Z*.

Proposition'3.3. Form =1,....,n — 1, we have
Ean—l = qn—lﬁn—m and Fan—l = Qn—lEn—m-

Proof. We prove it by induction. For n = 2, E1q1 = qlﬁl and qul = qlﬁl, as shown in
Figure 11.
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For the induction step, first suppose that qun_l = qn_lpn_m, qun_l = Q1 Eom
form = 1,...,n —1whenn < r, where r € Z*,r > 2. Then, consider qun,l =
qn_lﬁn_m and qun_l = qn_lﬁn_m when n = r.

By Proposition 3.1, tpt;_1E = tite_1 Ertp1ti1 = tuteEp_1titici = Eplititi_1.
Thus,

Proa By = te 1 tot By =t 1ty tite 1 Byt ot oty

=t, 1oty By atity 1ty oo toty = By _t, 29040t = Epaypi

0 ¢ 1By = qropr 1By = qroEy1pr_1. Alsoy Fq,—1 =G3-1F, ., holds when
n=r—1<r,50q_ 2L, = F._4q,_», and

QT—lEk = QT—ZEk—lpr—l = Fr—qu—2p’r—l = Fr—qu—l for k = 2,..,r—1L

Although £ # 1, by Condition (1), of Definition 1.1 and Proposition 3.2, we have the

following commutative diagram,

- > Er 1 Fr_pgr 3 Fv=FEr_pqr_1 EuF, LT
F,‘,qu-,l = QT'flEk TR ka1 7k k) QTlek = E?'*qu*l

Gr—1 Fr— iy qrsa Gr—1Gr—1F g1
:(JTfl%'flEkQTfl :(JTflErkaTflfbfl

FkQTfIFrfk’Erfk’:FkEk’%'flErfk\

QTfIFrfk = Equf]. quT,1 = QTflErfk,

SO EmQr—l 7 QT—lpr—m and FmQr—l = QT—lET’—m form=1--- ;7 — 1L

Therefore, the proof follows from induction. m

3.3 An interpretation of the actions of the cactus group

Let us prove the first part that
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Lemma 3.4. The maps

O (E)) = —p(F,—j) forj=1,.,n—1,
O (F) = —p(E,—;) forj=1..,n-1,
O (H;) = —p(Hpy1-i) fori=1,...n,

define a representation of U,(gl,,) on the vector space L(\).

Proof. To show that ™ defines a representation, we need to verify the followingidentity,

which can be deduced from the fact that ¢ is a representation.
e forcach1 <:1<n,1<j3<n—1,

q@T(Hz‘)q*@T(Hz‘) _ q*LPT(Hi)qu(Hi) £ 1,
¢* T (Ey) g = gl (E;),

q? o7 (Fy) g ? ) = g gl o7 (F);
e foreach1 <i,j <n-—1,
qsﬂT(Hi)—W(HHl) \ q_@T(Hi)+‘PT(Hi+1).

[P (EL), @7 (F))] = 03 e ;

Lemma 3.5. The leading asymptotics operators Lead (™ (E;)) and Lead(yp" (F})) exist

and are given by

Lead (@7 (Ej)) := —Foj,
Lead(¢7(Fy)) := —Ep;.

Proof of Theorem 1.7. First, by the above lemma, the leading asymptotics operators
Lead(¢"(E;)) and Lead (o7 (Fj)) exist and can be expressed by E; and F;. Following
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from the commutative relations given in Proposition 3.3, we get

Lead(¢(E;)) 0 gn—1 = @n—10 Lead(¢"(E;)), (24)
Lead(¢(F})) 0 gn-1 = gn-1 0 Lead(o"(F)). (25)

4 Conclusion

The main theorems, i.e., Theorem 1.3 and 1.7, can be summarized in-the following com-

mutative diagram,

(¢(B0).o(F) meleions, (#(ED. (D)

Asymptotics i — —ool Asymptotics i — —OOJ{

~ ~ Action by the generator ¢,, 1. 0f Cact,, ~ ~
({5A}7Ek>Fk> : yoes SIS <{€A}7Ek7Fk)7

whose left down-arrow states that the A= —oo leading asymptotics of the i-family of
representation ¢ of U,(gl,,) on the vectorspace L(X) gives rise to a gl -crystal. Further-
more, the two right-arrows and the right down-arrow state that the leading asymptotics
of the h-family of representation (" obtained by certain simple involution recovers the
actions of (the generators of).the cactus group C'act,, on the gl -crystal. In particular, the
identities in Theorem 1.7 can be rewritten as

Lead(¢" (Ey)) *= ¢, o Lead(p(Ej)) 0 gn1, (26)
Lead(¢™(F})) = d,2; o Lead(p(F})) © gn1. 27)

Abpart from Type. A Classical Lie algebras, there are also quantum groups U,(g) for
Types B, C, D.classical Lie algebras g, which should also have explicit representations of
U,(g) in the Gelfand-Tsetlin basis of the corresponding classical Lie algebras. (See [6]
for the Gelfand-Tsetlin basis of classical Lie algebras.) It would be interesting to study
the asymptotics as i — —oo of the explicit representations, and to recover their g-crystals

and cactus group actions in the same way as the present paper.
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