
2022 S.T. Yau High School Science Award

Research Report

The Team:
Student: Darren Li
Shanghai Guanghua Academy
Shanghai, China

Supervising Teacher: Yves Gallot
École Supérieure d'Electricité, SUPELEC (Retired)
Toulouse, France

Title of Research Report:
 An Efficient Modular Exponentiation Proof Scheme

Date: 2022/09/01
		

	

For	Yves	Gallot’s	research,	please	visit:									
https://www.researchgate.net/profile/Yves-Gallot/research	

仅
用
于

20
22
丘
成
桐
中
学
科
学
奖
公
示

20
22

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

s

An Efficient Modular Exponentiation Proof Scheme

Darren Li

Supervisor: Yves Gallot

Abstract

We present an efficient proof scheme for any instance of left-to-right modular

exponentiation, used in the Fermat probable prime test. Specifically, we show that

for any (a, n, r,m) the claim an ≡ r (mod m) can be proven and verified with an

overhead negligible compared to the computational cost of the exponentiation. Our

work generalizes the Gerbicz-Pietrzak double check scheme, greatly improving the

efficiency of general probabilistic primality tests in distributed searches for primes

such as PrimeGrid.

Keywords: Distributed computing, Primality testing, Proof schemes, Forking arguments

Contents

1 Introduction 2
1.1 Previous work . 3
1.2 Our contribution . 3

2 Double check process 4

3 Interactive proof scheme 5
3.1 Outline of our construction . 5
3.2 Formal process . 6

4 Proof of conditional soundness 7

5 Final remarks 12
5.1 Implementation and time-space tradeoff 12
5.2 Implications of conditional soundness . 13

6 References 14

7 Acknowledgements 15

1

仅
用
于

20
22
丘
成
桐
中
学
科
学
奖
公
示

20
22

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

s

1 Introduction

In distributed computing, the task of efficiently discerning correct results from incorrect

results, whether malicious or due to sheer chance, is notoriously difficult; it is necessary

to suspect all results as possibly incorrect, and these suspicions can only be settled

with peer verification. In most cases, such verification would take the form of an entire

recomputation, doubling the amount of necessary computational power, all for a result

that is most likely correct.

The majority of ongoing organized searches for primes of record-breaking sizes, such

as PrimeGrid [7], are distributed. A significant portion of computing power is wasted

in the double check process, where a single primality test is done twice to ensure the

correctness of each result.

For a candidate prime m, the bottleneck of the Fermat probable prime test lies in

evaluating am−1 (mod m) or a nearby power, requiring Õ(log2m) exact computations,

where a single precision error will render the rest of the calculation incorrect. To prevent

these errors that could potentially categorize a prime as composite, verification of all

results are necessary.

With the development of the Pietrzak verifiable delay function [5], it became possible

to instead use certificates - proofs of the result of modular exponentiation, thereby prov-

ing compositeness or probable primality - that could be created with minimal overhead

and verifiable much faster than recomputing the test. However, both methods rely on

the fact that for certain candidates, the desired answer can be achieved through only

repeated squaring, which is not true in the general case.

We present an optimization of the verification process by creating a certificate for

the Fermat probable prime test of any candidate prime, halving the total CPU time

necessary to conduct a Fermat probable prime test on a distributed system. Such a

certification scheme is particularly useful to accelerate the current search for Generalized

Fermat primes, a form introduced for its unprecedentedly fast algorithms and unique

GPU implementations [3] yet one of the few so far unamenable to the Gerbicz double

check scheme.

2

仅
用
于

20
22
丘
成
桐
中
学
科
学
奖
公
示

20
22

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

s

1.1 Previous work

The Gerbicz double check scheme, initially derived as an error check by Robert Gerbicz

and modified to a certification scheme by Pavel Atnashev [6], is used when the desired

result can be derived from a2
n
. This is the case for (probable) prime tests for candidates

of the form k · 2n − 1 and for Proth tests for primes of the form k · 2n + 1, where k is

relatively small.

The Gerbicz double check scheme uses a list of “checkpoints” C1, C2, . . . , where

Ci = a2
iB

for some constant B. It then exploits how we always have Ci+1 = C2B
i for all

i. During verification, the Gerbicz double check scheme takes all required equivalences,

takes each to a random exponent, and checks that the product of all left hand sides equal

the product of all right hand sides.

When implemented in a method similar to the Pietrzak verifiable delay function, the

Gerbicz double check scheme creates a certificate of O(log((log n)/B)) residues and takes

B squarings to verify. The Gerbicz-Pietrzak double check scheme has been successfully

implemented in the PrimeGrid distributed computing project since 2020. Although the

Pietrzak verifiable delay function was originally proved to have unconditional sound-

ness only when the modulus is the product of two safe primes, assuming the low order

assumption, conditional soundness holds for all multiplicative groups [4].

1.2 Our contribution

For our purposes, the Gerbicz-Pietrzak construction is not applicable due to inhomo-

geneous relations between checkpoints. We present a double check scheme similar to

that of Gerbicz, and we extend it to a certification scheme with a divide-and-conquer

structure similar to the Pietrzak verifiable delay function, completing a practical and

sound proof scheme for modular exponentiation in general.

The new construction can be further generalized into the verification of an individual

intervals of steps of the left-to-right modular exponentiation process, allowing for further

division of the Fermat probable prime test process, to the point where it becomes feasi-

ble to distribute steps across multiple computers for world-record level probable prime

tests. We have incorporated our described certificate construction to new versions of the

Genefer source code.

3

仅
用
于

20
22
丘
成
桐
中
学
科
学
奖
公
示

20
22

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

s

2 Double check process

We first outline the core idea of our certification scheme, the double check process.

Taking inspiration from Gerbicz, we similarly save checkpoints through the process of

left-to-right modular exponentiation. Suppose a is the base, n is the exponent, and m is

the modulus of the left-to-right modular exponentiation process that we wish to certify.

Let

n = n02
0 + n12

1 + · · ·+ nL−12
L−1

be the binary expansion of n, i.e. ni ∈ {0, 1}. Left-to-right modular exponentiation is

the calculation of the sequence ui = a⌊
n

2i
⌋, where

ui =

1 L ≤ i

u2i+1 · ani otherwise

Our answer is an ≡ u0 mod m. This computation requires L squarings and at most

L multiplications by a, the latter of which is cheaper than a full multiplication.

ui must satisfy that

ui = a

⌊
n

2i

⌋
= a

⌊⌊
n

2i

⌋
/2j

⌋
2j+(

⌊
n

2i

⌋
mod 2j)

= a

⌊
n

2i+j

⌋
2j
a

⌊
n

2i

⌋
mod 2j

= u2
j

i+ja

⌊
n

2i

⌋
mod 2j

Saving u0, uB, u2B, . . . for some constant B, a double check can then be expressed as

∏
l

uwl
lB

?
=
∏
l

uwl2
B

(l+1)Ba

(⌊
n

2Bl

⌋
mod 2B

)
wl

=

(∏
l

uwl

(l+1)B

)2B

x
∑

l

(⌊
n

2Bl

⌋
mod 2B

)
wl

where wi is randomly generated during the double check, indicating the weight of the i-

th checkpoint. This method reduces the cost of the double check from L multiplications

to B multiplications.

4

仅
用
于

20
22
丘
成
桐
中
学
科
学
奖
公
示

20
22

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

s

3 Interactive proof scheme

A direct implementation of the above method, as a proof scheme, requires a prohibitive

amount of bandwidth between the prover and the verifier, as such a certificate will need

to contain u0, uB, u2B, . . . for a total of L/B residues, amounting to several gigabytes in

cutting-edge primality tests. To ensure the practicality of our method, we describe a cer-

tificate construction, better understood as a special assignment to the weights described

above, that reduces the size of the certificate to log(L/B) residues.

In the following parts, we define that

S(x, y) = a

x+y−1∑
i=x

ni2
i−x

= a⌊ n
2x ⌋ mod 2y

Let P (i, L) be the claim that uiL = u2
L

(i+1)LS(iL, L). P (i, L) is effectively the asser-

tion that the step from uiL to u(i+1)L has no errors. For a valid u sequence, all P claims

are true.

3.1 Outline of our construction

We first describe an informal approach to our proof process; let us interpret claims to

be multiplicative; for example, P (a, L)bP (c, L)d is a shorthand for

ubaLu
d
cL =

(
ub(a+1)Lu

d
(c+1)L

)2L
S(aL,L)bS(cL, L)d

Initially, the prover seeks to prove P (0, 2x) for some 2x > L. To prove P (a, 2L), it is

sufficient to prove P (2a, L) and P (2a + 1, L). During the interactive proof, the prover

and verifier iteratively reduces the size of a claim equivalent to P (0, 2x). Suppose that

the prover currently has a claim A =
∏c−1

i=1 P (i, 2L)wi for weights wi. Expanding gives

[∏
uwi

i2L

]
︸ ︷︷ ︸

A1

=
[∏

uwi

(i+1)2L

]
︸ ︷︷ ︸

A2

2(2
L)

·
[∏

S(i2L, 2L)wi

]
︸ ︷︷ ︸

Known.

(A)

The verifier can check the current claim in 2L squarings. To halve the number of

5

仅
用
于

20
22
丘
成
桐
中
学
科
学
奖
公
示

20
22

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

s

squarings, we decompose A by the parity of i in P (i, 2L).

Define claim B as
∏c−1

i=0 P (2i, 2L−1)wi and claim C as
∏c−1

i=0 P (2i+1, 2L−1)wi . Much

like the Gerbicz process, the verifier randomly selects Q, after which the prover and

verifier agrees on a reduction A ⇐⇒ B ∧C ⇐⇒ A′ = B ·CQ. (We prove in Section

4 that, assuming the low order assumption in Z×
p , for a security parameter λ, when Q

is randomly sampled from from N ∪ [1, 2λ], A is equivalent to B ·CQ up to probability

negligible in λ.)

Similarly defining A′
1,2, B1,2, and C1,2, we now have:

[∏
uwi

(2i+0)2L−1

]
︸ ︷︷ ︸

B1=A1

=
[∏

uwi

(2i+1)2L−1

]
︸ ︷︷ ︸

B2

2(2
L−1)

·
[∏

S((2i+ 0)2L−1, 2L−1)wi

]
(B)

[∏
uwi

(2i+1)2L−1

]
︸ ︷︷ ︸

C1

=
[∏

uwi

(2i+2)2L−1

]
︸ ︷︷ ︸

C2=A2

2(2
L−1)

·
[∏

S((2i+ 1)2L−1, 2L−1)wi

]
(C)

Let µ = B2 = C1, which is unknown to the verifier. Then, A′
1 = A1 · µQ and A′

2 =

µ ·AQ
2 . These values successfully form the new claim A′ =

∏2c−1
i=0 P (i, 2L−1)w⌊i/2⌋Q

i mod 2
.

When the prover provides µ to the verifier, the number of squarings necessary to

verify its original claim is halved. This process is repeated as necessary. To optimize the

cost of the interaction on the prover’s part, the checkpointing rate does not need to be

a power of two, as our method can be easily generalized to decomposing claims of the

form P (0, B2x) where B is the precise checkpointing rate.

3.2 Formal process

We now present a formal description of the interaction between the prover and the

verifier. Suppose the prover and the verifier have agreed beforehand on the security

parameter λ, the modulus m, the checkpointing rate B, the base of the exponentiation

a, the exponent n, and an integer x such that n < 2B2x . Define the formal language

L =

(b, r, t, w0, w1, . . . , w2x−t−1) :

1 ≤ b, r < m, 0 ≤ t ≤ x

r ≡ b2
B2t

2x−t−1∏
i=0

S(iB2t, B2t)wi


6

仅
用
于

20
22
丘
成
桐
中
学
科
学
奖
公
示

20
22

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

s

The prover seeks to prove that (1, r, x, 1) ∈ L where r ≡ an.

Suppose that the prover claims (b, r, t, w0, w1, . . . , w2x−t−1) ∈ L.

1. If any of 1 ≤ b, r < m, 0 ≤ t ≤ x are not satisfied, the verifier returns reject.

2. If t = 0, the verifier checks that

r ≡ b2
B

2x−1∏
i=0

S(iB,B)wi ≡ b2
B
ac; c =

2x−1∑
i=0

wi

(⌊ n

2iB

⌋
mod 2B

)
and returns accept or reject accordingly.

3. Otherwise, the prover computes and sends to the verifier µ, where

µ ≡
2x−t−1∏
i=0

uwi

(2i+1)B2t−1 = b2
B2t−1

2x−t−1∏
i=0

S(2iB2t−1, B2t−1)wi

4. The verifier computes a challenge Q randomly sampled from N ∪ [1, 2λ], and the

prover and the verifier recurse on

(bµQ, µrQ, t− 1, w0, Qw0, w1, Qw1, . . . , w2x−t−1, Qw2x−t−1)

To construct a non-interactive proof, or a certificate, of the result r ≡ an, it suffices

to replace the verifier challenges with a hash of the current state by the Fiat-Shamir

heuristic.

4 Proof of conditional soundness

We demonstrate that for any (λ,m,B, a, n, x), assuming the hardness of finding an

element of Z×
p with order less than 2λ, no adversary can forge a result and certificates

with non-negligible probability with respect to λ.

Specifically, assume the contrary; suppose there exists a randomized polynomial time

adversary A defined as

A(λ,m,B, a, n, x;Qx, Qx−1, . . . , Q1)→ Ix, (µx, Ix−1), (µx−1, Ix−2), . . . , (µ1, I0)

7

仅
用
于

20
22
丘
成
桐
中
学
科
学
奖
公
示

20
22

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

s

Prover Verifier

t = 0
Both parties agree on (λ,m,B, a, n, x)

t = 1

Prover sends Ix

t = 2

Verifier sends Qx

Both parties agree on Ix−1

t = 3

Prover sends µx−1

t = 2

Verifier sends Qx−1

Both parties agree on Ix−2

t = 3

Prover sends µx−2

t = 4

Verifier sends Qx−2

Both parties agree on Ix−3

...
t = 2x− 2

t = 2x− 1

Prover sends µ1

t = 2x

Verifier sends Q1

Both parties agree on I0

Verifier checks I0 ∈? L and returns
accept or reject accordingly.

Figure 1: Interactive proof process

When given (λ,m,B, a, n, x) and randomly sampled Qx, Qx−1, . . . , Q1 ← N ∪ [1, 2λ],
A attempts to generate an input Ix = (1, r, x, 1) and an corresponding interaction

(µx, Ix−1), (µx−1, Ix−2), . . . , (µ1, I0) (see figure 1) and succeeds with probability non-

negligible in λ.

We say that A succeeds if and only if

1. Ix ̸∈ L and I0 ∈ L, i.e. A deceives a verifier with challenges Qx, Qx−1, . . . , Q1.

2. For all y and all Q′
y, Q

′
y−1, . . . , Q1 ← N ∪ [1, 2λ], we have that when A is run with

the same random tape (i.e. makes the same random decisions) it must hold that

8

仅
用
于

20
22
丘
成
桐
中
学
科
学
奖
公
示

20
22

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

s

Iy = I ′y and µy = µ′
y, where

A(λ,m,B, a, n, x;Qx, . . . , Qy+1, Qy, . . . , Q1)→ Ix, (µx, Ix−1), (µx−1, Ix−2), . . . , (µ1, I0)

A(λ,m,B, a, n, x;Qx, . . . , Qy+1, Q
′
y, . . . , Q

′
1)→ I ′x, (µ

′
x, I

′
x−1), (µ

′
x−1, I

′
x−2), . . . , (µ

′
1, I

′
0)

The latter condition is necessary to ensure that A does not “look ahead” and base

decisions (of I and µ) based on future challenges.

Therefore, we seek to prove that

Theorem 1. For some (λ,m,B, a, n, x), if A succeeds with probability non-negligible

with respect to λ, there exists an adversary that can use A twice to obtain an element

of Z×
p with order less than 2λ with non-negligible probability, breaking the low-order

assumption.

To this end we will prove two claims:

1. If, using A, an adversary finds a state Iy ̸∈ L, a prover message µy, and two

separate challenges Qy, Q
′
y such that the resulting states Iy and I ′y are both in L,

then the attacker can recover some element E ̸≡ 1 and some exponent 0 < r < 2λ

such that Er ≡ 1, breaking the low order assumption.

2. If A succeeds with probability m, an adversary using A twice succeeds in finding

(Iy, µy, Qy, Q
′
y) with probability at least m(m/x− 2−λ).

Proof of first claim. When the adversary indeed succeeds in finding (Iy, µy, Qy, Q
′
y), we

have some Iy such that Iy ̸∈ L and two Iy−1, I
′
y−1, caused by Qy and Q′

y respectively,

such that Iy−1, I
′
y−1 ∈ L.

For a state I = (b, r, t, w0, w1, . . . , w2x−t−1), define R(I) = r, B(I) = b, and C(I) as

C(I) =

2x−t−1∑
i=0

wi

(⌊ n

2iB2t

⌋
mod 2B2t

)
By Iy ̸∈ L, we have

R(Iy) ̸≡ B(Iy)
2B2y

aC(Iy)

9

仅
用
于

20
22
丘
成
桐
中
学
科
学
奖
公
示

20
22

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

s

or

R(Iy) ̸≡
(
B(Iy)

2B2y−1
)2B2y−1

aC(Iy)

=

(
B(Iy)

2B2y−1
)2B2y−1

a

2x−y−1∑
i=0

wi

(⌊
n

2iB2y

⌋
mod 2B2y

)

=

(
B(Iy)

2B2y−1
)2B2y−1

a

2x−y−1∑
i=0

wi

(⌊
n

2(2i+0)B2y−1

⌋
mod 2B2y−1

)

a
2B2y−1 2x−y−1∑

i=0
wi

(⌊
n

2(2i+1)B2y−1

⌋
mod 2B2y−1

)

If we define c1 and c2 as

c1 =

2x−y−1∑
i=0

wi

(⌊ n

2(2i+0)B2y−1

⌋
mod 2B2y−1

)

c2 =

2x−y−1∑
i=0

wi

(⌊ n

2(2i+1)B2y−1

⌋
mod 2B2y−1

)
it follows that at least one of the following does not hold:

R(Iy) ≡ µ2B2y−1

y ac2 (1)

µy ≡ B(Iy)
2B2y−1

ac1 (2)

By Iy−1, I
′
y−1 ∈ L, for Iy−1 have R(Iy−1) ≡ B(Iy−1)

2B2y−1

aC(Iy−1). At the same time,

our recursion Iy → Iy−1 is defined with B(Iy−1) = B(Iy)µ
Q
y , R(Iy−1) = µyR(Iy)

Q, and

C(Iy−1) = c1 +Qc2; expanding for Iy and I ′y gives

µyR(Iy)
Q ≡

(
B(Iy)µ

Q
y

)2B2y−1

ac1+Qc2

µyR(Iy)
Q′ ≡

(
B(Iy)µ

Q′
y

)2B2y−1

ac1+Q′c2

Rearranging,

µy/

(
B(Iy)

2B2y−1

ac1
)
≡
(
µ2B2y−1

y ac2/R(Iy)

)Q

≡
(
µ2B2y−1

y ac2/R(Iy)

)Q′

10

仅
用
于

20
22
丘
成
桐
中
学
科
学
奖
公
示

20
22

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

s

If (1) is false, then E|Q−Q′| ≡ 1 where

E = µ2B2y−1

y ac2/R(Iy) ̸≡ 1

for 0 < |Q−Q′| ≤ 2λ, breaking the low-order assumption.

If (2) is false and (1) is true, then µy/
(
B(Iy)

2B2y−1

ac1
)
̸≡ 1 while µ2B2y−1

y ac2/R(Iy) ≡(
µ2B2y−1

y ac2/R(Iy)
)Q
≡ 1; such a case is impossible.

This demonstrates that in the event of the adversary succeeding, an element E is

generated with order less than 2λ, breaking the low order assumption as required.

It remains to analyze the probability of the adversary succeeding in finding the

desired setting (Iy, µy, Qy, Q
′
y) with only two uses of A.

Proof of second claim. The structure of our proof mirrors the forking argument used in

“A Survey of Two Verifiable Delay Functions ” [4]. Specifically, we reinterpret A as part

of a new process A′ that is more amenable to an application of the generalized forking

lemma introduced by Bellare and Neven [2].

Let us abstract A as a probabilistic Turing machine with random tape R. Define

A′(λ,m,B, a, n, x;Qx, Qx−1, . . . , Q1;R) to represent an execution of A with the given

parameters and random tape R; A′ returns (ϵ, ϵ, ϵ, ϵ) if A fails, and otherwise outputs

(y, Iy, µy, Iy−1) where y = argmin(y : Iy ̸∈ L).
For a given (λ,m,B, a, n, x), the adversary then proceeds as follows:

1. The adversary randomly samples Qx, Qx−1, . . . , Q1 ← N ∪ [1, 2λ] and generates a

random tape R.

2. The adversary executes y, Iy, µy, Iy−1 ← A′(λ,m,B, a, n, x;Qx, Qx−1, . . . , Q1;R),

and if y = ϵ the adversary fails.

3. The adversary randomly samples Q′
y, Q

′
y−1, . . . , Q

′
1 ← N ∪ [1, 2λ].

4. The adversary executes

y′, I ′y, µ
′
y, I

′
y−1 ← A′(λ,m,B, a, n, x;Qx, Qx−1, . . . , Qy+1, Q

′
y, Qy−1, . . . , Q

′
1;R)

and if y′ = ϵ or y′ ̸= y the adversary fails.

11

仅
用
于

20
22
丘
成
桐
中
学
科
学
奖
公
示

20
22

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

s

5. By the second condition for success of A, it now must hold that I ′y = Iy and

µ′
y = µy, as neither the random tape nor Q1...x have changed.

6. If Qy ̸= Q′
y, the adversary succeeds and generates (y, Iy, µy, Qy, Q

′
y, Iy−1, I

′
y−1);

otherwise, it fails.

By the generalized forking lemma, if A succeeds with probability ε, then the adver-

sary succeeds with probability of at least ε(ε/x − 1/2λ). It follows that if A succeeds

with non-negligible probability, then the adversary also succeeds with non-negligible

probability, as x ∈ O(poly logm) ∈ O(poly λ).

Combined, these two lemmas complete the desired proof of conditional soundness for

our modular exponentiation proof scheme: if the low order assumption holds in Z×
p , then

for any initial configuration (λ,m,B, a, n, x), the probability of an adversary convincing

the verifier for a state I ̸∈ L is negligible in λ.

5 Final remarks

5.1 Implementation and time-space tradeoff

A direct usage of the formal definition of our proof scheme defined in Section 3.2 is

impractical for the purposes of distributed primality testing, as it requires the calculation

of b2
B2t−1

for t = x→ 1, incurring 2L squarings; exactly what we want to avoid. Using

the abstraction described in Section 3.1, we see that it is equivalent to instead store

b2
Bi

for i = 0 . . . 2x− 1; however, for smaller B, the primality test becomes bottlenecked

by disk I/O. In distributed computing, this entails balancing B not only between the

additional prover cost and the verifier, but also the disk space the prover has available.

On the other hand, we can reverse the time-space tradeoff, by instead choosing a

larger B for the prover. Yet this does not necessarily mean verification becomes more

expensive; the final bottleneck for the verifier is always the verification of r ≡ b2
B
ac,

which takes polynomial (in L) squarings, as opposed to the interaction, which takes a

polylogarithmic number of squarings. This is exactly the initial form, i.e. the prover

needs that (b, r, x′, 1) ∈ L′ where L′ is defined as in Section 3.2 with some λ, the same

m, some different B′ and x′ such that B′2x
′
= B, the same a, and a new n = c. In

12

仅
用
于

20
22
丘
成
桐
中
学
科
学
奖
公
示

20
22

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

s

other words, the prover and verifier can recurse again on (b, r, x′, 1) and L′, reducing
the number of squarings for the verifier to B′, at the cost of B extra squarings from the

prover.

5.2 Implications of conditional soundness

Due to Shor’s algorithm, the low-order assumption does not hold in the quantum comput-

ing model [1], as there exists a quantum adversary that computes the discrete logarithm

in Õ((logm)2). This does not yet pose a practical threat to distributed computing pur-

poses: for probabilistic Fermat prime tests, not only is logm ≫ 105 several orders of

magnitude larger than the intended scale of Shor’s algorithm for decrypting public-key

cryptosystems, but moreover because n < m for the purpose of primality tests, classi-

cal algorithms also run in Õ((logm)2) and are likely much faster. This de facto safety

may change if our results are used to optimize other applications, such as cryptographic

distributed exponentiation.

13

仅
用
于

20
22
丘
成
桐
中
学
科
学
奖
公
示

20
22

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

s

6 References

[1] P.W. Shor. “Algorithms for quantum computation: discrete logarithms and factor-

ing”. In: Proceedings 35th Annual Symposium on Foundations of Computer Science.

1994, pp. 124–134. doi: 10.1109/SFCS.1994.365700.

[2] Mihir Bellare and Gregory Neven. “Multi-Signatures in the Plain Public-Key Model

and a General Forking Lemma”. In: Proceedings of the 13th ACM Conference on

Computer and Communications Security. CCS ’06. Alexandria, Virginia, USA: As-

sociation for Computing Machinery, 2006, pp. 390–399. isbn: 1595935185. doi:

10.1145/1180405.1180453. url: https://doi.org/10.1145/1180405.1180453.

[3] Yves Gallot. “Genefer, A Program for Finding Large Probable Generalized Fermat

Primes: Mathematical representation and algorithms”. In: (2017). url: https://

app.assembla.com/spaces/genefer/subversion/source/HEAD/trunk/doc/

geneferMath.pdf.

[4] Dan Boneh, Benedikt Bünz, and Ben Fisch. A Survey of Two Verifiable Delay

Functions. Cryptology ePrint Archive, Paper 2018/712. https://eprint.iacr.

org/2018/712. 2018. url: https://eprint.iacr.org/2018/712.

[5] Krzysztof Pietrzak. “Simple Verifiable Delay Functions”. In: 10th Innovations in

Theoretical Computer Science Conference (ITCS 2019). Ed. by Avrim Blum. Vol. 124.

Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018, 60:1–60:15. isbn: 978-3-95977-

095-8. doi: 10.4230/LIPIcs.ITCS.2019.60. url: http://drops.dagstuhl.de/

opus/volltexte/2018/10153.

[6] Pavel Atnashev. Efficient Proth/PRP Test Proof Scheme. Mar. 2020. url: https:

//www.mersenneforum.org/showthread.php?t=25323.

[7] Rytis Slatkevičius. PrimeGrid. url: https://www.primegrid.com/.

14

仅
用
于

20
22
丘
成
桐
中
学
科
学
奖
公
示

20
22

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

s

https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1145/1180405.1180453
https://app.assembla.com/spaces/genefer/subversion/source/HEAD/trunk/doc/geneferMath.pdf
https://app.assembla.com/spaces/genefer/subversion/source/HEAD/trunk/doc/geneferMath.pdf
https://app.assembla.com/spaces/genefer/subversion/source/HEAD/trunk/doc/geneferMath.pdf
https://eprint.iacr.org/2018/712
https://eprint.iacr.org/2018/712
https://eprint.iacr.org/2018/712
https://doi.org/10.4230/LIPIcs.ITCS.2019.60
http://drops.dagstuhl.de/opus/volltexte/2018/10153
http://drops.dagstuhl.de/opus/volltexte/2018/10153
https://www.mersenneforum.org/showthread.php?t=25323
https://www.mersenneforum.org/showthread.php?t=25323
https://www.primegrid.com/

7 Acknowledgements

The author would like to thank his advisor, Yves Gallot, not only for his invaluable advice

for this paper, but also for his continued development of Genefer and its contribution to

PrimeGrid, without either of which the author would never have realized the power of

number theory in distributed computing.

The author would like to thank his principal, Wan Jie, for his support in our research.

This paper is dedicated to Ruvim Breydo, who taught me how to do real math.

15

仅
用
于

20
22
丘
成
桐
中
学
科
学
奖
公
示

20
22

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

s

