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Realization of virus universe with applications

Tianyi Ren

Abstract

In recent years, the studies of virus genomes attract more and more at-

tention. Among various methods to study biological sequences, alignment-

free methods are taking an increasingly important role because large-

scale data requires high computational efficiency, while the traditional

alignment-based methods fail to achieve. In this paper, we transform

the viral genomes into vectors called natural vectors using mathemati-

cal techniques, and analyze the properties of these vectors in order to

study the corresponding biological sequences. We first show that the cor-

responding natural vectors from the same families will gather together

based on the convex hull principle, then the k-NN algorithm is applied

to the classification of virus genomes. In this paper, we also consider k-

mer natural vectors and propose a training process to obtain the optimal

value of the weights for different k-mers. Results suggest that our algo-

rithm to train the weights successfully outperforms the previous manual

selected weights. We further study the SARS-CoV-2 database and de-

velop a method to identify new variants from known variants. It provides

insight into the epidemiological research of COVID-19, especially on the

prevention of new pandemic caused by unknown and new variants.

Keywords: natural vectors; k-NN; weight training; new variant

identification
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1 Introduction

The virus genomic universe is a constantly updating space, because new virus

genomes emerge and are added to known databases all the time. It is important

to analyze the similarity and dissimilarity between those viral genomes to gain a

better understanding of the relationship between them, which may inspire us to

cure related diseases and develop vaccines. In practical applications, this virus

genomic universe is constructed by converting sequences to vectors in order

to apply the mathematical techniques. We hope to use better transformation

methods and develop better metrics from the perspective of mathematics, so

that the distances between these genomes can represent their biological simi-

larity accurately. In this universe, similar genomic sequences (such as from the

same family or genus) will be clustered together in the corresponding mathe-

matical space. Therefore, a well-defined distance will be able to help us in many

aspects, such as family classification and new variant identification. In particu-

lar, the genome space is constructed in a high-dimensional Euclidean space, and

all genomes in the space are uniquely represented as high-dimensional points,

i.e., vectors. In this project, we use the natural vector method to achieve this [1].

It is proved that there is a one-to-one correspondence between a sequence and

its natural vector as long as the order is sufficiently high. In practice, we use

natural vectors to construct the genome universe and we further develop k-mer

natural vector to do the classification.

Here is a brief introduction to our project. Chapter 3 introduces the basic

framework of natural vectors to convert an arbitrary DNA sequence to a vec-

tor. We also show that each natural vector uniquely determines one DNA se-

quence, which is the basis of following discussions. Moreover there are two ways

to increase the dimension and are used in different situations, which consider

high-order and k-mer, respectively. Chapter 4 shows the gathering property

of natural vectors from the same family using convex hull analysis. In other

words, the convex hulls of different viral families are constructed based on the

corresponding natural vectors and are disjoint in high dimensional space.

Chapter 5 and 6 are the main applications of our work. In chapter 5 we use

the 1-NN method to predict which family a new sequence should belongs to. We

first compute the distance using k-mer natural vectors where k ranges from 1 to

a certain K. We further propose an algorithm to train the weights of different

k-mer natural vectors, so that the weighted sum of distance can better reflects

the similarity between the corresponding sequences accurately. In Chapter 6, we

apply the proposed method on the identification of new SARS-CoV-2 variants.

We compare the distance from a viral sequence to the sequences in the variant

group and not in the variant group. Then kernel density estimation is used to

plot those distributions (as random variables) to show that the two distributions

of distances are different. This inspires us to use a way similar to hypothesis
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testing to detect new variants. The accuracy of our method achieves an accuracy

of over 99.5% in the detection of new variant in SARS-CoV-2 based on current

data.

2 Data

This article uses four datasets. Dataset 1 and 2 consist of all available virus

reference sequences. Dataset 3 and 4 include SARS-CoV-2 genomes from GI-

SAID.

Dataset 1 is the latest whole virus reference sequence database downloaded

from NCBI (National Center for Biotechnology Information, https://ftp.

ncbi.nlm.nih.gov/refseq/release/viral) on June 30, 2022. Sequences with

unknown family information or containing ambiguous letters (such as N) are re-

moved. In other words, we only keep the high-quality genome viruses in our

study. If a sequence is the only one in a family, it is also removed to avoid prob-

lems in classification. After the cleaning process, there are 11,559 sequences in

the Dataset 1.

Dataset 2 is a previous whole virus reference sequence database from [2], con-

taining all sequences submitted to ftp.ncbi.nlm.nih.gov/genomes/Viruses

before March 31, 2020. There are 7,382 sequences that pass the same criteria

as for dataset 1. Dataset 2 is only for training in section 5.

Dataset 3 is based on the well-acknowledged database of SARS-CoV-2 (https:

//gisaid.org). It is worth noticing that here we only consider the main vari-

ants of concern (VOC), i.e., Alpha, Beta, Gamma, Delta, Omicron, instead of

all the variants. We delete sequences containing ambiguous letters. The same

sequences that appear multiple times in the dataset are considered only once,

because the information remains the same if the genome sequences are identical.

After data cleaning, there are 287,182 sequences that pass and are submitted

before June 30, 2022.

Dataset 4 is a subset of Dataset 3, in which we randomly select 400 sequences

from each of the five variants. The random sampling is repeated three times to

eliminate the sampling error. In other words, we have three versions of Dataset

4, each of which are randomly and independently sampled from Dataset 3 with

the same size (2,000 sequences). The introduction of Dataset 4 is due to the

scale requirement of k-NN method, which Dataset 3 fails to satisfy because of

the large number of sequences.
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3 The natural vector method and its properties

3.1 Natural vectors

When analyzing biological sequences, such as DNA, multiple sequence alignment

(MSA) is often used to compare the sequences. However, it is well known that

alignment takes a lot of computing sources and is extremely time-consuming,

which makes it difficult to analyze multiple genome data simultaneously. To un-

derstand these sequences effectively and comprehensively, we apply the concept

of natural vectors proposed by Yau et al. [1]. Theoretically, every DNA can be

represented by S = s1...sn, where si can be any element in {A, T,C,G}. If we

consider its 0-order central moment to m-order central moment, we can create

a 4(m+ 1) dimensional vector as follows:

Definition 3.1. Consider any DNA sequence S = s1s2...sn, define

wk(i) =

{
1, si = k

0, else
(1)

where k, si ∈ {A, T,C,G}. Then the m-order natural vector is defined as

(nA, nC , nG, nT , µA, µC , µG, µT , D
A
2 , D

C
2 , D

G
2 , D

T
2 , ..., D

A
m, DC

m, DG
m, DT

m)

where

nk =

n∑
i=1

wk(i), n = nA + nT + nC + nG (2)

µk =

n∑
i=1

i

nk
wk(i) (3)

Dk
j =

n∑
i=1

(i− µk)
j

nj−1
k nj−1

wk(i) (4)

(If nk = 0, we define µk = 0 and Dk
j = 0 for all j.)

The normalization factor in Definition 3.1,
1

nj−1
k nj−1

, is designed in the way

that when j → +∞, Dk
j → 0.

For example, consider the sequence ACGGT , we have
nA = 1,

nC = 1,

nG = 2,

nT = 1,
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by counting the number of four letters. Their average positions are
µA = 1,

µC = 2,

µG = 3+4
2 = 7

2 ,

µT = 5.

Therefore, we calculate the 2-order central moment
DA

2 = 0,

DC
2 = 0,

DG
2 =

(3− 7
2 )

2+(4− 7
2 )

2

2×5 = 1
20 ,

DT
2 = 0,

and the 2-order natural of ACGGT is (1, 1, 2, 1, 1, 2, 7
2 , 5, 0, 0,

1
20 , 0).

3.2 One to one correspondence

In this subsection, we will show that it is possible to summarize the informa-

tion in a DNA sequence into its natural vector of high order, which in reverse

determines the corresponding DNA sequence uniquely ( [1]). This fact can be

illustrated by Theorem 3.3. Newton identity (Lemma 3.2) is applied to prove

this theorem.

Lemma 3.2. [Newton identity] Let p(z) := s0z
n + s1z

n−1 + ... + sn (s0 = 1)

and its roots are z1, ..., zn, Pk :=
n∑

i=1

zki , then

Pds0 + Pd−1s1 + ...+ P1sd−1 + dsd = 0, ∀d ≤ n.

Proof. See [3].

Theorem 3.3. Let s be a sequence whose 0-order elements are nA, nC , nG, nT

respectively. Let m = max{nA, nC , nG, nT }, v is the m-order natural vector

of s, then there is no other sequence s̃ whose m-order natural vector is also v.

Moreover, given the m-order natural vector v, we can calculate its corresponding

sequence s.

Proof. Based on v, we can easily get n, nA, nC , nT , nG. Thus we only need to

show that from v, nA locations of element A in total n locations are determined

uniquely, and therefore we can determine the whole sequence. (C,G, T are

similar.) We use zi (i = 1, ..., nA) to denote the locations of A (z1 < z2 < ... <
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znA
) in the sequence. Denote z̃k = zk − µk, the following T1, ..., TnA

can be

calculated from v: 
T1 = z̃1 + ...+ z̃nA

T2 = z̃21 + ...+ z̃2nA

...

TnA
= z̃nA

1 + ...+ z̃nA
nA

.

Let p(z) = s0z
nA + s1z

nA−1 + ... + snA
= (z − z̃1)...(z − z̃nA

), and s0 = 1. By

Lemma 3.2, we have

T1s0 + s1 = 0,

T2s0 + T1s1 + 2s2 = 0,

T3s0 + T2s1 + T1s2 + 3s3 = 0,

...

TnA
s0 + TnA−1s1 + · · ·+ nAsnA

= 0.

We can solve si by Ti: 

s1 = −T1,

s2 =
T 2
1 −T2

2 ,

s3 = −T 3
1 +2T3−3T1T2

6 ,

...

snA
=

∑
nA∑
i=1

imi=nA

mi≥0

nA∏
i=1

(−Ti)
mi

mi!imi

Therefore, we get the parameter of p(z) and the corresponding solutions z̃1, ..., z̃nA

can be calculated by enumerating (l − µA) where l is a integer ranging from 1

to n. Therefore, the positions of all A are determined. Similarly we can obtain

the positions of C, G, T and therefore the entire sequence.

3.3 k-mer natural vectors

Besides increasing the orders of natural vector, we also applied the k-mer natural

vector idea in this project [4]. k-mer natural vector is based on the combination

of k-mer and the original natural vector. In the k-mer natural vector method,

we replace the four kinds of nucleotides {A, T,C,G} by 4k elements, that is,

treating all possible k-mer subsequence s1...sk (si ∈ {A, T,C,G}) of length k

as a unit. (These units are denoted by l1,...,l4k .) Then we calculate the natural

vector of sequence

(nl1 , ..., nl
4k
, µl1 , ..., µl

4k
, Dl1

2 , ..., D
l
4k

2 , ..., Dl1
m, ..., D

l
4k
m )

7

仅
用
于

20
22
丘
成
桐
中
学
科
学
奖
公
示

20
22

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

s



similarly as in the original natural vector, where nlj is the number of occurrence

of the jth string in our sequence (corresponding to the previous nA) and so

on. We usually take first three orders in practice (m = 2), and therefore the

dimension of a k-mer natural vector is 3 × 4k. Compared with 1-mer natural

vectors, k-mer vectors include the relationship between adjoining sites.

We take the sequence ACGCGCGT as an example and calculate its 2-mer

natural vector to show how this works. There are 4 kinds of 2-mer (AC,CG,GC,GT )

in the sequence and we may denote them by l1, ..., l4 (l5, ..., l16 are set to 0 au-

tomatically because they do not appear in the example sequence), thus we have

n1 = 1,

n2 = 3,

n3 = 2,

n4 = 1,

µ1 = 1,

µ2 = 2+4+6
3 = 4,

µ3 = 3+5
2 = 4,

µ4 = 7,

D1
2 = 0,

D2
2 = (2−4)2+(4−4)2+(6−4)2

3×7 = 8
21 ,

D3
2 = (3−4)2+(5−4)2)

2×7 = 1
7 ,

D4
2 = 0,

Therefore the final 2-mer natural vector of ACGCGCGT is

(1, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 4, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
8

21
,

1

7
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

4 Geometry of natural vectors

In this section, we show that natural vectors of the sequences from the same

family actually gather together in the genome space. In fact, it can be illustrated

from the perspective of convex hull principle.

Definition 4.1. y1, ..., ym ∈ Rn. A convex combination of y1, ..., ym is defined

as λ1y1 + ...+ λmym, where λi ∈ [0, 1] and
m∑
i=1

λi = 1.

Definition 4.2. The set P ⊂ Rn is called a convex set if ∀ y1, ..., ym ∈ P , every

convex combination of y1, ..., ym is still located in P.
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Definition 4.3. Let P ⊂ Rn. The convex hull of P , Conv(P ), is defined as the

minimum convex set that contains P . Equivalently, we can define the convex

hull as the set of all convex combination of points in P .

We illustrate the gathering of natural vectors from the same family by the

convex hull principle, that is, the natural vectors of sufficiently high order from

different families form disjoint convex hulls. On the other hand, if the two

convex hulls intersect, we believe that those two families may share some similar

biological characteristics.

We need an algorithm to check whether two convex hulls are disjoint or not

in order to show the gathering property of sequences from the same family.

Actually, the problem can be transformed to solving the following equations:

s∑
i=1

λiai −
t∑

j=1

βjbj = 0,

s∑
i=1

λi = 1,

t∑
j=1

βj = 1,

0 ≤ λi ≤ 1, i = 1, ..., s,

0 ≤ βj ≤ 1, j = 1, ..., t,

where a1, ..., as and b1, ..., bt are natural vectors from two different families. This

equation is solved by linprog function in Matlab.

During programming in Matlab, it is of great significance to avoid the

numerical error because high-order elements of natural vectors tend to zero.

Therefore, we need to do the maximum normalization for each dimension to

get consistent scale. More specifically, if we denote the j-th dimension of the

i-th natural vector as v
(j)
i , instead of using v

(j)
i directly in the computation, we

actually consider N ∗ v
(j)
i

max
l

|v(j)l |
after normalization, where N is a large number

to make the values not tend to zero. For the reference sequences of all viruses,

we choose N = 10, 000 and for SARS-CoV-2, we choose N = 1015 because the

sequences are relatively much shorter. As is proved in Lemma 4.4, it is easy

to show that the maximum normalization preserve the disjoint properties of

convex hull.

Lemma 4.4. P1, P2 ⊂ Rn are two sets. A ∈ GLn(F ), i.e. A is a n × n

reversible matrix. APi := {Ax|x ∈ Pi}. Then Conv(P1) and Conv(P2) are

disjoint if and only if Conv(AP1) and Conv(AP2) are disjoint.

Proof. If Conv(P1) and Conv(P2) are not disjoint, there exist λ1, ..., λs, β1, ..., βt ∈
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R satisfying 

s∑
i=1

λi = 1,

t∑
j=1

βj = 1,

0 ≤ λi ≤ 1, i = 1, ..., s,

0 ≤ βj ≤ 1, j = 1, ..., t,

and a1, ..., as ∈ P1, b1, ..., bt ∈ P2 such that

s∑
i=1

λiai −
t∑

j=1

βjbj = 0.

Therefore,
s∑

i=1

λiAai −
t∑

j=1

βjAbj = 0

and Conv(AP1) and Conv(AP2) are not disjoint. The other direction is the

same since A is reversible.

By Lemma 4.4, we could magnify the high-order elements approaching zero

by acting on them using a matrix with large coefficents such that they will not

ignored in programming. Then the disjoint properties are preserved. We first

consider Dataset 1, where 11,559 sequences from 123 families form 123 convex

hulls. The disjoint status of
(
123
2

)
= 7, 503 pairs of convex hull are checked and

shown in Table 1. Results show that these 7503 pairs of convex hulls of 33-order

natural vector do not intersect, in other words, these pairs are disjoint in the

4×(33+1) = 136 dimensional space. Detailed results are shown below. (Disjoint

percentage is defined as
The number of disjoint pairs

The number of all pairs
where the denominator is

7,503 in this case.)

order disjoint pairs disjoint percentage

2 6759 90.0%

3 7040 93.8%

4 7337 97.8%

5 7378 98.3%

6 7421 98.9%

7 7435 99.1%

... ... ...

33 7503 100%

Table 1: The disjoint percentage of families on Dataset 1 increases as order

increases, and equals 100% when order=33.
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As shown in the Table 1, even for natural vectors of low order, over 90% of

the pairs are disjoint. Only a few families that share a great deal of biological

similarities require high order to detect the difference. This is a strong evidence

that those 123 families in Dataset 1 are generally distinct from each other.

The convex hull principle of natural vectors is true not only on the family

level of viruses, but also on the variant level of viruses. We consider Dataset 3

and find that natural vectors of sequences from different variants form disjoint

convex hull. In the Dataset 3, 287,182 sequences are from 5 variants. The

result of convex hull analysis shows that 5 convex hulls are mutually disjoint for

23-order natural vectors in a 96-dimensional space (96 = 4× (23 + 1)).

5 Virus classification: k-NN algorithm and weight

training technique

This section mainly discusses how to determine the family that a DNA sequence

belongs to via calculating the distance between different families. A well known

supervised algorithm to solve this problem is k nearest neighbors method (k-NN

method) [5] and here we select k = 1 to achieve the goal.

Given a series of natural vectors u1, ..., um with known family information

and a query natural vector v, 1-NN method is done by the following steps. First,

we calculate the distance di := dis(ui, v) (the choice of metric will be discussed

later). Then, we take i from {1, ...,m} such that di is the smallest number

among {d1, ..., dm}. Finally, we predict the family of v to be the family that ui

belongs to.

We prefer to consider k-mer natural vectors instead of high-order natural

vectors because high orders in the original natural vector approach zero and

therefore increasing orders will not significantly improve the result. For each k,

Dk is defined to represent the Euclidean metric for k-mer natural vectors.

To include more information of the sequence, we combine the distances of

multiple k together and the weighted sum will refine the distance so that it

describes the similarity between sequences more accurately. We denote k from

1 to K in the k-mer method.

DisK =

K∑
i=1

aiDi

Then the problem becomes the choice of ai. Three candidates of distances

are considered here. Based on previous experiments [2], ai = 1
2i is a good

weight in the sense that the percentage of the correct predictions are relatively

high (corresponding distance denoted by Dis1K), and sometimes ai =
1
i2 is also

11
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satisfactory (corresponding distance denoted by Dis2K). We also consider the

original k-mer weight:

{
ai = 1, i = K

ai = 0, otherwise
and denote it by Dis3K .

We apply these three distances on Dataset 1 and evaluate it using the leave-

one-out cross validation (LOOCV): assume that there are n sequences in the

dataset, for each sequence, we take the remaining n−1 sequences as the training

set to test it. By this method, we can make a prediction of the family of

one sequence and compare it to its true family. The percentage of the correct

predictions is defined as the accuracy for the distance. Accuracy results are

shown in the following table:

K Dis1K Dis2K Dis3K
1 79.80% 79.80% 79.80%

2 83.31% 82.48% 83.46%

3 84.05% 83.33% 78.17%

4 83.58% 83.68% 72.07%

5 84.19% 84.62% 68.05%

6 85.76% 86.50% 57.15%

7 86.84% 87.45% 46.66%

8 87.50% 87.02% 41.17%

9 87.66% 83.76% 36.68%

Table 2: The 1-NN accuracy of Dis1(ai =
1
2i ), Dis2(ai =

1
i2 ) and Dis3(pure

K-mer, ai = 1 only when i = K) on Dataset 1

Results in Table 1 show that, the pure K-mer weight is the worst and the

weight 1
2i is the best for most cases. For the weight 1

2i , the accuracy is relatively

satisfying when K is high.

We further develop the weight training technique to determine a suitable

weight without trials and experience to increase accuracy. Motivated by gradi-

ent descent method [6] in optimization problems, we first randomly generate a

weight for each dimension and then train the weights for multiple iterations to

get the optimal solution.

In order to adapt different scales for the weights of different dimensions,

we apply multiplication instead of addition in the training. More precisely, if

wn ∈ Rn is the current weight and v ∈ Rn is the direction, then the new weight

is calculated by:

wn+1 = wn ⊙ (1n + v)

where 1n = (1, ..., 1) ∈ Rn and Hadamard product ⊙ is the element wise product

defined by (aij)⊙ (bij) = (aijbij).
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Definition 5.1. v is called a non-decreasing direction on w if

F (w) ≤ F (w ⊙ (1n + v)).

In order to find a non-decreasing direction, we consider three candidates,

which include a random direction, its reverse direction, and the same direction

that we just moved from. Among those three directions, we choose the one that

improve the accuracy most as our direction for this step.

To be more specific, we propose the weight training algorithm as follows:

Algorithm 1 Weight training algorithm

Require: iteration number N , K (the largest k for k−mer), distribution X.

1: Initialization: Randomly selectK numbers from uniform distribution U [0, 1]

as the initial weight w0.

2: for i = 1 to N do

3: Randomly select K numbers from X to form a direction vrandomi .

4: If there are non-decreasing directions on wi−1 in vrandomi ,−vrandomi ,vmem
i ,

choose the one with the highest accuracy as the direction for step i, de-

noted as vchoseni . Then let vmem
i+1 = vchoseni and wi = wi−1⊙ (1+ vchosen).

If not, vmem
i+1 = vmem

i and wi = wi−1.

5: end for

During training, it is important to watch out for over-fitting. In this problem,

“over-fitted” means that the the weight trained by one dataset is only suitable

for itself, but on a new set (as the test), the performance is bad. Therefore, if

new sequences are found and added to the input, the performance of the weight

will decrease dramatically. In this paper, a natural way is applied to check if

our method is over-fitted. First, we train our weight by Dataset 2, a previous

dataset for whole virus reference sequences. Then, we apply this weight to

Dataset 1, the latest dataset for whole virus reference sequences. If the weight

also performs well on Dataset 1, it is safe to say that the weight is stable and is

not over-fitted.

Different choices of X such as normal distributions, Cauchy distributions

and uniform distributions are considered here. However, experimental results

show that their performances are quite similar while the uniform distribution

is slightly better with the simplest form. Therefore, we choose the uniform

distribution to be X with variance is selected to be 0.32 (Thus X is chosen as

U [−0.52, 0.52]).

Given the iteration number N = 100, the largest value of k, i.e., K = 9, and

a random weight with initial accuracy is 45.67%, after the training process, we

obtain the following weight (all weight divided by the first item to make a1 = 1)
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a1 = 1

a2 = 3.7× 10−1

a3 = 7.2× 10−2

a4 = 5.9× 10−3

a5 = 2.2× 10−2

a6 = 1.6× 10−2

a7 = 1.2× 10−2

a8 = 5.7× 10−3

a9 = 2.9× 10−4

The accuracy of this weight on the training set (Dataset 2) is 88.44%. And

we apply the result to Dataset 1 as the testing set. The result is shown as

follows: (When K < 9, the distance is truncated, indicating only considering

a1,...,aK . This distance is denoted by DisK .)

K DisK
1 79.80%

2 82.97%

3 83.55%

4 83.75%

5 84.96%

6 86.46%

7 87.66%

8 88.10%

9 88.16%

Table 3: The 1-NN accuracy of DisK on Dataset 1 increases as K increases

From Table 3, we can see that the weight trained by Dataset 2 actually

works on Dataset 1 with the best performance of 88.16%. For most cases, new

weight performs better than the fixed weight ai =
1
2i , which is the best weight

without any training.

Therefore, the weight training provides us a way to automatically choose

good weights and guarantees our accuracy of correct prediction. Besides, virus

classification can be done in the level of not only families but also variants. Take

SARS-CoV-2 as example. There are many variants in SARS-CoV-2 and we can

also use 1-NN algorithm to classify them. Since there are 287,182 sequences in
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Dataset 3 and applying 1-NN is too time-consuming, we apply 1-NN to Dataset

4. The results are good for all the three random sets in Dataset 4. Here in

Table 5 we select the first random dataset for Dataset 4 as an example.

K Dis1K Dis2K Dis3K
1 95.2% 95.2% 95.2%

2 97.9% 97.6% 97.85%

3 99.05% 99% 99.2%

4 99.35% 99.3% 99.35%

5 99.35% 99.4% 99.4%

6 99.85% 99.85% 99.85%

7 99.85% 99.85% 99.85%

8 99.85% 99.85% 99.9%

9 99.85% 99.85% 99.9%

Table 4: The 1-NN accuracy of Dis1K , Dis2K , and Dis3K on one set of Dataset 4

Different from 1-NN results of Dataset 1 (Table 2), the accuracy shown in

Table 4 is good enough when K is large. Therefore, it is unnecessary to use

weight training technique for Dataset 4. In section 6, we will take Dis39 as the

metric to identify new variant for SARS-CoV-2 since it is the best weight shown

in Table 4.

6 New variant identification

In this section, we develop a method to identify new variants and apply to

Dataset 4 (a random subset of SARS-CoV-2 genomes).

First, we define a distance between a point and a set as below, and then use

it to detect viruses from new variants.

Definition 6.1. (Rn, d) is a metric space, v ∈ Rn, P ⊂ Rn, we define

D(v, P ) =

min
u∈P

d(v, u), v /∈ P,

min
u∈P\{v}

d(v, u), v ∈ P.

The choice of d is Dis39 for this paper.

We denote P1, ..., P5 as the sets of natural vectors of the five variants of

SARS-CoV-2. Let v be a random sequence not from Pi, then d(v, Pi) is a random

variable denoted by Y
(not)
i . Similarly, let v be a random sequence from Pi, then

d(v, Pi) can be denoted by Y
(in)
i . We claim that those two variables, Y

(not)
i
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and Y
(in)
i have different distributions and it can be applied to determination of

whether a sequence is from Pi or not.

Given a random set in Dataset 4, for each i, we have 400 samples for Y
(in)
i

and 1600 samples for Y
(not)
i . The densities of Y

(in)
i and Y

(not)
i are plotted by

kernel density estimation [7] in Figure 1, using Beta variant as an example. (The

densities of other variants are listed in the supplemental materials.) Kernel

density estimation is a method to plot the density function, which is a more

direct visualization graph than histogram. Its idea is simple: given a period [x−

h, x+h] and N is the sample size, we can approximate 2hf(x) by
1[x−h,x+h](xi)

N
,

where x1, ..., xN are samples and 1A is the indicator function defined by

1A(x) =

{
1, x ∈ A,

0, x /∈ A.

Denote K(x) = 1
21[−1,1](x), then

2hf(x) ≈
2K(xi−x

h )

N
,

f(x) ≈ f̃(x) :=
1

hN
K(

xi − x

h
).

However, f̃ is not smooth enough and may be inaccurate if the data is not

sufficient. Therefore, in kernel density estimation, K is changed to KG, the

density function of a zero-mean normal distribution similar to K. We take
1

hNKG(
xi−x
h ) as the approximated density.
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Figure 1: Different distributions of d(v, Pi) for variant Beta of SARS-CoV-2.

For Y in, v ∈ Pi; for Y
not, v ∈ P c

i . Pi = {sequences in Beta variant}

We see from Figure 1 that the significant difference between the distribution

of Y (in) and Y (not), which offers us a way to detect new variants based on its

location in the distributions.

Definition 6.2. f1, ..., fn ∈ R, then the upper α quantile of f1, ..., fn is defined

by

min{x|Count(fi ≤ x) ≥ (1− α)n}.

Definition 6.3. A upper α distance bound for a set Pi is defined as the upper

α quantile of {D(v, Pi)|v ∈ Pi}, denoted by Bα
i .

Based on what we have got so far, we propose the following algorithm to

detect sequences from new variants.
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Algorithm 2 New variant identification algorithm

Require: α in the upper quantile

1: Calculate Bα
i (i ∈ I) defined in Definition 6.3 (I is the index set of given

variants).

2: Given a new sequence v, calculate di := D(v, Pi) (i ∈ I) where D is defined

in Definition 6.1.

3: If di > Bα
i for each i, we claim that v is a sequence from new variant.

We apply this algorithm to the identification of new variants in Dataset 4

(SARS-CoV-2), and evaluate it by the following two approaches.

The first approach takes the time order into account. To be more specific,

this approach identifies a variant based on the variants found before it. This

way can better reflect the cases in reality. New variants are detected succes-

sively by predicting whether a new sequence belongs to any known variant. For

our dataset, the well-acknowledged chronological order of the five variants is

Alpha→Gamma→Beta→Delta→Omicron. Take Delta as an example. For each

sequence in Delta variant, we calculate its distance to the three variants before

it (Alpha, Gamma, and Beta), and then compare the distances to the thresh-

old respectively. If our algorithm suggests that the sequence doesn’t belong to

Alpha, Gamma, or Beta, then we predict the new sequence is actually a new

(Delta) variant.

We take α = 0.01 and test the algorithm, the accuracy is shown as follows

(all three random sets in Dataset 4 are considered):

New variant Random set 1 Random set 2 Random set 3

Gamma 100% 100% 100%

Beta 100% 100% 99.75%

Delta 100% 100% 100%

Omicron 99.75% 99.5% 99.75%

Table 5: Accuracy of new variant identification on Dataset 4 when α = 0.01

(Approach 1)

The second approach ignores the time order of variants. We simply identify

one variant based on the information of all other variants. For example, we

can take Alpha, Beta, Gamma, Omicron as given variants and predict whether

Delta is a new variant. It may not be the case in reality but it is also a way

to check the effect of our method. Take α = 0.01 and the result is shown as

follows:
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New variant Random set 1 Random set 2 Random set 3

Alpha 100% 100% 100%

Gamma 100% 100% 99.75%

Beta 100% 100% 99.75%

Delta 99.75% 99.75% 99.75%

Omicron 99.75% 99.5% 99.75%

Table 6: Accuracy of new variant identification on Dataset 4 when α = 0.01

(Approach 2)

The results in Table 5 and 6 show that under both evaluation method, our

algorithm achieves good performance in the identification of new variants. The

parameter, α = 0.01, indicates that nearly 1% of sequences that are from a

known family will be predicted to not from its family. And the high accuracy

shows that there is low possibility that a new variant is not detected.

The analysis above can be rewritten in the language of hypothesis testing.

Type I error means rejecting a true case while type II error means accepting a

wrong case.

Result: a new variant Result: not a new variant

Reality: a new variant correct Type I Error

Reality: not a new variant Type II Error correct

Table 7: New variant identification from the perspective of hypothesis testing

The two evaluation results actually suggest the probability of type I error.

(Accuracy=1-P(Type I Error)). We find that the probability of type I error is

pretty small. And the type II error is approximately bounded by α we choose.

If a sequence is predicted to be from a new variant but actually not, then the

distance between it and the variant should be larger than (1−α) of the distances

between it and sequences from the same variant. Therefore, approximately

P (Type II Error) ≤ α (we use ”approximately” because new sequences may

be slightly different from known sequences even for the same variant). It shows

that the probability of both type I and II error of our algorithm is sufficiently

low, and is a good way for the identification of new variants.

7 Discussion and conclusion

Based on the convex hull principle, we have constructed the genome space of

virus dataset in 136-dimensional Euclidean space and all pairs of convex hulls

are pairwise disjoint. For 1-NN classification, unlike the previous human efforts,
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that is, using weights given by trials and our experience, we propose a new tech-

nique to train the weight in this paper. The weights trained by our algorithm,

are better than that with human intervention. We train the weights by the old

dataset in 2020 (Dataset 2) and apply it to the latest dataset (Dataset 1). Un-

der this new training weight, the accuracy of classification has been improved

from 87.66% to 88.16%. Finally, we focus on SARS-CoV-2 dataset and develop

an algorithm to detect new variants from known variants, which achieves an

accuracy of over 99.5%.

Two new methods are proposed in this paper, i.e., weight training method

and new variant identification method, to improve the accuracy of prediction

on virus classification. Weight training method offers us a way to obtain the

optimal weights for k-mer natural vector method, and integrates the information

of different ks to describe the similarity between biological sequences. New

variant identification method is of great importance for epidemic control from

the prompt identification of new variants.

The paper can be further improved in the following aspects. First, the

parameters of weight training technique, including distributions of random di-

rections and the number of iterations, can be discussed and more candidate

distributions can be considered to improve the accuracy. Second, since the

dataset for SARS-CoV-2 is too large, some analysis is done in random subsets

instead of the whole dataset. Thus more time-efficient algorithms might be pro-

posed in the future to solve this issue. Third, for new variants detection, so

far we can only apply the method on the known sequences on GISAID, but the

performance on unknown variants remains unknown. Thus the evaluation on

the new variants in the future would help us assess the method.
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