
ON THE ELEMENTARY PROOF OF THE INVERSE

ERDÖS-HEILBRONN PROBLEM

SHENGNING ZHANG

Abstract. In this article, we studied the inverse Erdős-Heilbronn problem

with the sumset from two components A and B that are not necessarily the
same. We give a completely elementary proof for the problem in Z and some

partial results that contributes to the elementary proof of the problem in

Z/pZ, avoiding the usage of the powerful polynomial method and the combi-
natorial Nullstellensatz.

1. Introduction

A basic object in Additive Number Theory is the sumset of sets A and B:

A+B = {a+ b : a ∈ A, b ∈ B}.

A simple problem in Additive Number Theory is: Given two subsets A and B
of sets of integers, what properties can we determined about A + B? A classic
result is the Cauchy-Davenport Theorem proved by Cauchy [1] in 1813 and inde-
pendently by Davenport [2] in 1935. Let p be a prime, if A and B are nonempty
subsets of Z/pZ, then the theorem asserts that

|A+B| ≥ min{p, |A|+ |B| − 1}.

Similarly, we can define the restricted sumsets of sets A and B:

A+̂B = {a+ b : a ∈ A, b ∈ B, a ̸= b}.

In 1964, P. Erdős and H. Heilbronn [3] conjectured that∣∣A+̂A
∣∣ ≥ min{p, 2|A| − 3},

where p is a prime and A is a nonempty subset of Z/pZ. The conjecture was then
proved by J. A. Dias da Silva and Y. O. Hamidoune [4] in 1994 through the usage
of methods from linear algebra. The more general case∣∣A+̂B

∣∣ ≥ min{p, |A|+ |B| − 3}

was established and proved by N. Alon, Melvin B. Nathanson, and Imre Z. Ruzsa
[5] in 1995 using the polynomial method.

These theorems above depict the properties of sumsets and restricted sumsets
given the knowledge of the individual sets that make up the sumsets or restricted
sumsets. Thus, one may consider the inverse directions of these problems and
there indeed exists several beautiful results. In particular, Gy. Károlyi [6] points
out the following inverse problem of the Erdős-Heilbronn conjecture:
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2 SHENGNING ZHANG

Let sets A,B ⊆ Z/pZ be nonempty sets such that p ≥ |A| + |B| − 2, where p is a
prime. Then |A+̂B| = |A|+ |B| − 3 if and only if A = B and one of the following
holds:

(1) |A| = 2 or |A| = 3;
(2) |A| = 4 and A = {a, a+ d, c, c+ d};
(3) |A| ≥ 5 and A is an arithmetic progression.

This paper is motivated to give an elementary proof of the results. Firstly, the
original proof of this statement [6] relies on the combinatorial Nullstellensatz
and the polynomial method through the entire proof of the theorem. Inspired by
[7], we believe that this should be unnecessary for such an elementary statement.
Secondly, we hope to obtain a more explicit view to the structures of the sumsets
in Z and Z/pZ by an elementary proof.

Our strategy is to first prove the inverse problem of the Erdős-Heilbronn conjec-
ture for Z, which is of independent interests. Our result generalizes Nathanson’s
proof [8], where the case A = B is studied. In our work A and B are not neces-
sarily the same. We then give some partial results for the elementary proof of the
case in Z/pZ through Theorem 5, Theorem 6 and Theorem 7.

2. Notations

To simplify our proofs, we will use the following notations throughout the rest of
the paper:

(1) Let G be the group Z or Z/pZ. For nonempty finite sets A, B ⊆ G with
|A|, |B| ≥ 2, note

A = {a1, a2, · · · , am} (m = |A|)

and

B = {b1, b2, · · · , bn} (n = |B|).
If G = Z, we always assume that a1 < a2 < · · · < am and b1 < b2 <
· · · < bn; If G = Z/pZ, we identity it as set with {0, 1, 2, · · · , p − 1}, and
without the abuse of notation, we also assume a1 < a2 < · · · < am and
b1 < b2 < · · · < bn;

(2) For nonempty finite sets A, B ⊆ G with |A|, |B| ≥ 2, define the restricted
sumset of A and B as A+̂B. A+̂B = {a + b : a ∈ A, b ∈ B, a ̸= b} if
G = Z and A+̂B = {a+ b mod p : a ∈ A, b ∈ B, a ̸= b} if G = Z/pZ;

(3) For nonempty finite sets A, B ⊆ G with |A|, |B| ≥ 2, if

|A+̂B| = |A|+ |B| − 3,

then we call the unordered pair (A,B) a critical pair;

(4) For nonempty finite set A ⊆ G with |A| ≥ 2, if A can be written into the
form A = {τ + id : i = 0, 1, · · · , |A|−1} for some τ, d ∈ G with d ̸= 0, then
we call set A a standard set;
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ON THE ELEMENTARY PROOF OF THE INVERSE ERDÖS-HEILBRONN PROBLEM 3

(5) If sets A and B are both standard sets and A = B, then we call the un-
ordered pair (A,B) a standard pair.

(6) Suppose m,n ∈ Z+ ∪ {0} and p is a prime. Let X ∈ Z/pZ be a nonempty
set with |X| ≥ 2. Suppose d is a given generator of Z/pZ. Then [m,n]d is
called a gap with respect to d in X if rd /∈ X for ∀r ∈ {m,m + 1, · · · , n}.
The length of the gap [m,n]d is (n−m+ 1).

3. The Cases of Z for 2 ≤ |A| ≤ 4

Theorem 1. Let finite sets A,B ⊆ Z be nonempty sets. If |A| = 2, then (A,B)
is a critical pair if and only if A = B.

Proof. We first consider the sufficiency of the conditions. If A = B, then assume
that A = B = {a1, a2}. Thus,

|A+̂B| = |{a1 + a2}| = 1 = |A|+ |B| − 3.

For the necessity of the conditions, suppose A = {a1, a2}. If a2 ̸= bn, due to
a2 > a1 and bn = maxx∈B{x}, we have

a2 + bn ∈ (A+̂B) \ ({a1}+̂B).

Together with

({a1}+̂B) ∪ {a2 + bn} ⊆ A+̂B,

there is

|A+̂B| ≥ |({a1}+̂B) ∪ {a2 + bn}| = |B| − 1 + 1 > |A|+ |B| − 3.

A contradiction ! Therefore, a2 = bn.

Similarly, if a1 ̸= b1, we have

a1 + b1 ∈ (A+̂B) \ ({a2}+̂B),

because a1 < a2 and b1 = minx∈B{x}. Thus, combining with

({a2}+̂B) ∪ {a1 + b1} ⊆ A+̂B,

there is

|A+̂B| ≥ |({a2}+̂B) ∪ {a1 + b1}| = |B| − 1 + 1 > |A|+ |B| − 3.

Consequently, a1 = b1.

Since a1, a2 ∈ B, |{a1}+̂B| = |{a2}+̂B| = |B| − 1 = |A| + |B| − 3 = |A+̂B|.
Thus, due to {a1}+̂B, {a2}+̂B ⊆ A+̂B, there is {a1}+̂B = {a2}+̂B = A+̂B.
Now, because a1 ̸= b2, we have a1 + b2 ∈ {a1}+̂B = {a2}+̂B. Therefore, ∃bi ∈
B (i ∈ Z+), such that a1 + b2 = a2 + bi. Notice that a2 > a1, so we must have
bi < b2. According to the definition of B, bi = b1. Together with a1 = b1, we have
bn = a2 = b2. So, we have proven that A = B.

□

Theorem 2. Let finite sets A,B ⊆ Z be nonempty sets. If |A| = 3, then (A,B)
is a critical pair if and only if A = B.
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4 SHENGNING ZHANG

Proof. Considering the sufficiency of the conditions, if A = B, we may assume
that A = B = {a1, a2, a3}, then

|A+̂B| = |{a1 + a2, a1 + a3, a2 + a3}| = 3 = |A|+ |B| − 3.

In order to prove the necessity of the conditions, we will first prove that A ⊆ B.
If a1 /∈ B, then

|{a1}+̂B| = |B| = |A|+ |B| − 3 = |A+̂B|.

Since {a1}+̂B ⊆ A+̂B and {a2, a3}+̂B ⊆ A+̂B, we have

{a2, a3}+̂B ⊆ {a1}+̂B = A+̂B.

This indicates that for ∀bi ∈ B (i ∈ Z+) with bi ̸= a2, ∃bj ∈ B (j ∈ Z+) such
that a2 + bi = a1 + bj . Suppose a2 ̸= bn, then a2 + bn = a1 + bj . However, for
∀bk ∈ B (k ∈ Z+), there is a2+bn > a1+bk. A contradiction! Thus, we must have
a2 = bn. Notice that for ∀bk ∈ B (k ∈ Z+), there is a3 + bn > a1 + bk. Therefore,
by applying the same argument, there is a3 = bn, which contradicts to a3 > a2.
Consequently, we must have a1 ∈ B.

If a3 /∈ B, then

|{a3}+̂B| = |B| = |A|+ |B| − 3 = |A+̂B|.

Since {a3}+̂B ⊆ A+̂B and {a1, a2}+̂B ⊆ A+̂B, we have

{a1, a2}+̂B ⊆ {a3}+̂B = A+̂B.

This indicates that for ∀bi ∈ B (i ∈ Z+) with bi ̸= a2, ∃bj ∈ B (j ∈ Z+) such that
a2 + bi = a3 + bj . Suppose a2 ̸= b1, then a2 + b1 = a3 + bj . However, we know
that for ∀bk ∈ B (k ∈ Z+), there is a2 + b1 < a3 + bk. A contradiction! Thus, we
must have a2 = b1. Notice that for ∀bk ∈ B (k ∈ Z+), there is a1 + b1 < a2 + bk.
Therefore, by applying the same argument, there is a1 = b1, which contradicts to
a2 > a1. Consequently, we must have a3 ∈ B.

If a2 /∈ B, then

|{a2}+̂B| = |B| = |A|+ |B| − 3 = |A+̂B|.

Since {a2}+̂B ⊆ A+̂B and {a1, a3}+̂B ⊆ A+̂B, we have

{a1, a3}+̂B ⊆ {a2}+̂B = A+̂B.

Through Theorem 2 we know that |B| ≥ 3, for |B| = 2 indicates that |A| = 2.
Thus, bn−1 /∈ {b1, bn}. Using this condition, we have a3+ bn−1 ∈ A+̂B = {a2}+̂B.
This implies that ∃bi ∈ B (i ∈ Z+) such that a3 + bn−1 = a2 + bj . Since a3 > a2,
there must be bj > bn−1. Thus, bj = bn. Together with a3 = bn, we have a2 =
bn−1 ∈ B. A contradiction! Therefore, a2 ∈ B. Combining with the arguments
above, we have A ⊆ B.

Suppose a1 ̸= b1, then a1 + b1 ∈ (A+̂B) \ ({a3}+̂B), for a1 < a3 and b1 =
minx∈B{x}. Thus, a2 = b1, or else we can get a2 + b1 ∈ (A+̂B) \ ({a3}+̂B) with
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ON THE ELEMENTARY PROOF OF THE INVERSE ERDÖS-HEILBRONN PROBLEM 5

the same argument above. Apparently, ({a3}+̂B) ∪ {a1 + b1, a2 + b1} ⊆ A+̂B.
However, because (A,B) is a critical pair,

|({a3}+̂B) ∪ {a1 + b1, a2 + b1}| = |{a1}+̂B|+ |{a1 + b1, a2 + b1}|
= (|B| − 1) + 2

= |A|+ |B| − 2

= |A+̂B|+ 1

leads to a contradiction! Therefore, a1 = b1.

Suppose a3 ̸= bn, then a3+bn ∈ A+̂B\{a1}+̂B, for a1 < a3 and bn = maxx∈B{x}.
So, a2 = bn, or else we can get a2 + bn ∈ (A+̂B) \ ({a1}+̂B) with the same
argument above. Apparently, ({a1}+̂B) ∪ {a2 + bn, a3 + bn} ⊆ A+̂B. However,
because (A,B) is a critical pair,

|({a1}+̂B) ∪ {a2 + bn, a3 + bn}| = |{a1}+̂B|+ |{a2 + bn, a3 + bn}|
= (|B| − 1) + 2

= |A|+ |B| − 2

= |A+̂B|+ 1

leads to a contradiction! Therefore, a3 = bn.

Since a1 ∈ B, we have |{a1}+̂B| = |B| − 1. Due to bn−1 /∈ {b1, bn} = {a1, a3},
a1 < bn−1. So, a1 + bn < a3 + bn−1. Therefore, a3 + bn−1 ∈ (A+̂B) \ ({a1}+̂B).
Consequently,

|{a3 + bn−1} ∪ ({a1}+̂B)| = |B| = |A|+ |B| − 3 = |A+̂B|.

Since ({a3+ bn−1})∪ ({a1}+̂B) ⊆ A+̂B, we have {a3+ bn−1}∪ ({a1}+̂B) = A+̂B.
Apparently, a2 + bn ∈ (A+̂B) \ ({a1}+̂B). With the same argument, there is
{a2 + bn} ∪ ({a1}+̂B) = A+̂B. This together with the previous argument above
leads to

{a3 + bn−1} ∪ ({a1}+̂B) = {a2 + bn} ∪ ({a1}+̂B).

Thus, a3 + bn−1 = a2 + bn, indicating that a2 = bn−1.

Suppose |B| ≥ 4, then ∃bn−2 ∈ B \ {b1, bn−1, bn}. If a3 + bn−2 ∈ {a1}+̂B, then
∃bi ∈ B \{a1} (i ∈ Z+) such that a1+bi = a3+bn−2. Since a1 < a3, we must have
bi > bn−2. Thus, bi = bn. This leads to a2 = bn−2. A contradiction! Therefore,
a3 + bn−2 /∈ {a1}+̂B. Combining

{a3 + bn−2} ∪ ({a1}+̂B) ⊆ A+̂B

with

|{a3 + bn−2} ∪ ({a1}+̂B)| = |B| = |A+̂B|,
we have {a3 + bn−2} ∪ ({a1}+̂B) = A+̂B. Recalling that

{a2 + bn} ∪ ({a1}+̂B) = A+̂B,

we can get a2+bn = a3+bn−2. Thus, a2 = bn−2, which is not possible! Therefore,
|B| = 3. This implies that A = B.

□
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6 SHENGNING ZHANG

Theorem 3. Let finite sets A,B ⊆ Z be nonempty sets. If |A| = 4, then (A,B)
is a critical pair if and only if A = B and A = {a, c, a+ d, c+ d}.

Proof. We first consider the sufficiency of the conditions. If A = B and A =
{a, a+ d, c, c+ d}, then we have

|A+̂B| = |{a+ c, 2a+ c, 2c+ d, a+ c+ d, a+ c+ 2d}| = 5 = |A|+ |B| − 3.

Now, consider the necessity of conditions. Apparently,

|({a4}+̂B) ∪ ({b1}+̂A)| = |{a4}+̂B|+ |{b1}+̂A| − |({a4}+̂B) ∩ ({b1}+̂A)|.

Noticing that ({a4}+̂B) ∩ ({b1}+̂A) = {a4 + b1}, we have

|({a4}+̂B) ∪ ({b1}+̂A)| ≥ (|A| − 1) + (|B| − 1)− 1 = |A+̂B|.

Since ({a4}+̂B)∪({b1}+̂A) ⊆ A+̂B, there is ({a4}+̂B)∪({b1}+̂A) = A+̂B. Thus,
|{a4}+̂B| = |B| − 1 and |{b1}+̂A| = |A| − 1. This gives us a4 ∈ B and b1 ∈ A.
Using the same argument, we have ({a1}+̂B) ∪ ({bn}+̂A) = A+̂B, a1 ∈ B and
bn ∈ A. Through the definition of a1, a4, b1 and bn, there must be a1 = b1 and
a4 = bn. Then, there are

A+̂B = ({a4}+̂B) ∪ ({b1}+̂A)

= {a4 + b1, a4 + b2, · · · , a4 + bn−1} ∪ {b1 + a2, b1 + a3}
= {a4 + b1, a4 + b2, · · · , a4 + bn−1} ∪ {a1 + a2, a1 + a3}

and

A+̂B = ({a1}+̂B) ∪ ({bn}+̂A)

= {a1 + b2, a1 + b3, · · · , a1 + bn} ∪ {bn + a2, bn + a3}.

Rearrange the elements in A+̂B, and then we have

A+̂B = {a1 + a2, a1 + a3, a4 + b1, a4 + b2, · · · , a4 + bn−1}
= {a1 + b2, a1 + b3, · · · , a1 + bn, a2 + bn, a3 + bn}.

Notice that a1+a2 < a1+a3 < · · · < a4+bn−1 and a1+b2 < a1+b3 < · · · < a3+bn,
then there must be a4 + bn−1 = a3 + bn and a1 + a2 = a1 + b2. So, we can get
a2 = b2, which further indicates that a3 = b3. What’s more, a4 = bn shows that
a3 = bn−1. As a result, b3 = bn−1. Therefore,

A = {a1, a2, a3, a4} = {b1, b2, b3, b4} = B.

It’s now easy for us to find that A+̂B = {a1+a4, a2+a4, a3+a4, a1+a2, a1+a3}.
Since we also have a2 + a3 ∈ A+̂B, it’s apparent that a2 + a3 = a1 + a4. This
means a3 − a1 = a4 − a2. By letting a3 − a1 = d, a1 = a and a2 = c, we have
A = {a, c, a+ d, c+ d}, which completes the proof.

□
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ON THE ELEMENTARY PROOF OF THE INVERSE ERDÖS-HEILBRONN PROBLEM 7

4. The Cases of Z for |A| ≥ 5

Theorem 4. Let sets A,B ⊆ Z be nonempty sets. If |A| ≥ 5, then (A,B) is a
critical pair if and only if (A,B) is a standard pair.

Proof. We still first consider the sufficiency of the conditions. Since (A,B) is a
standard pair, we may assume that

A = B = {a1, a2, · · · , am} = {a+ id : i = 0, 1, · · · ,m− 1}
for some a, d ∈ Z+. Define A′ = B′ = {id : i = 0, 1, · · · ,m−1}. For ∀x+y ∈ A+̂B,
there is (x − a) + (y − a) ∈ A′+̂B′. Similarly, for ∀u + w ∈ A′+̂B′, there is
(u+ a) + (w + a) ∈ A+̂B. So, |A+̂B| = |A′+̂B′|. Now, according to the definition
of sumset and restricted sumset, we have

A′+̂B′ ⊆ A′ +B′

and

|A′ +B′| = |{id : i = 0, 1, · · · , 2m− 2}| = |A′|+ |B′| − 1 ≥ |A′+̂B′|.
Apparently, there are 0 /∈ A′+̂B′ and (2m − 2)d /∈ A′+̂B′. Thus, A′+̂B′ ⊆ {id :
i = 1, · · · , 2m − 3}. For ∀x ∈ [1,m− 1] ∩ Z, we can choose 0 ∈ A′ and xd ∈ B′.
Since 0 ̸= xd, we have xd = 0 + xd ∈ A′+̂B′. For ∀x ∈ [m, 2m− 3] ∩ Z, we can
choose (m− 1)d ∈ A′ and (x−m+ 1)d ∈ B′. Since x ∈ [m, 2m− 3] ∩ Z,

(x−m+ 1)d < (m− 1)d.

Therefore, we have xd = (m−1)d+(x−m+1)d ∈ A′+̂B′. So, for ∀x ∈ [1, 2m− 3],
xd ∈ A′+̂B′. Combining with A′+̂B′ ⊆ {id : i = 1, · · · , 2m − 3}, we have
A′+̂B′ = {id : i = 1, · · · , 2m− 3}. As a result,

|A+̂B| = |A′+̂B′| = |{id : i = 1, · · · , 2m− 3}| = 2m− 3 = |A|+ |B| − 3.

To prove the necessity of the conditions, let’s consider the following lemmas.

Lemma 1. If finite sets A,B ⊆ Z are nonempty sets, then |A+B| ≥ |A|+ |B|−1.

Proof. Since A and B are finite sets, define the element with the largest absolute
value in A as ax and the element with the largest absolute value in B as by. Ap-
parently, ∃p such that p is a prime number and p > max{am, bn, |ax| + |by|, |A| +
|B| − 1}. Thus, applying the Cauchy-Davenport theorem in Z/pZ [1], we have
|A+B| ≥ min{p, |A|+ |B| − 1} = |A|+ |B| − 1.

□

Lemma 2. If finite sets A,B ⊆ Z are nonempty sets, then |A+̂B| ≥ |A|+ |B|−3.

Proof. Similar with Lemma 1, since A and B are finite sets, define the element
with the largest absolute value in A as ax and the element with the largest ab-
solute value in B as by. Apparently, ∃p such that p is a prime number and p >
max{am, bn, |ax| + |by|, |A| + |B| − 3}. Thus, applying the general case of the
Erdős-Heilbronn conjecture in Z/pZ [5], we have |A+B| ≥ min{p, |A|+ |B|−3} =
|A|+ |B| − 3.

□

Lemma 3. (A,B) is a critical pair and |A| ≥ 5. If B ⊆ A, then am = bn and
(X,Y ) is also a critical pair, where X = A \ {am} and Y = B \ {an}.
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8 SHENGNING ZHANG

Proof. Since B ⊆ A, we have am ≥ bn. Notice that (A+̂{b1}) ∩ ({am}+̂B) =
{am + b1}. Since

(A+̂{b1}) ∪ ({am}+̂B) ⊆ A+̂B,

we have

|A+̂B| ≥ |(A+̂{b1}) ∪ ({am}+̂B)| = |A+̂{b1}|+ |{am}+̂B| − 1.

If am > bn, then am /∈ B. Thus,

|A+̂{b1}|+ |{am}+̂B| − 1 = (|A| − 1) + |B| − 1 = |A|+ |B| − 2.

A contradiction! Therefore, am = bn.

Apparently,

|(X+̂Y ) ∩ ({am}+̂A)| = |(X+̂Y ) ∩ (({am}+̂A) \ {am−1 + am})|
≤ |({am}+̂A) \ {am−1 + am}|
= |A| − 2.

Now, because B ⊆ A, we have A+̂B = (X+̂Y ) ∪ ({am}+̂A). Thus, according to
Lemma 2,

|(X+̂Y ) ∩ ({am}+̂A)| = |X+̂Y |+ |{am}+̂A| − |(X+̂Y ) ∪ ({am}+̂A)|
= |X+̂Y |+ |{am}+̂A| − |A+̂B|
≥ (|X|+ |Y | − 3) + (|A| − 1)− (A|+ |B| − 3)

= |A| − 3

Thus, |(X+̂Y ) ∩ ({am}+̂A)| ∈ {|A| − 2, |A| − 3}.

If |(X+̂Y ) ∩ ({am}+̂A)| = |A| − 2, then

(X+̂Y ) ∩ ({am}+̂A) = ({am}+̂A) \ {am−1 + am}.
This implies that for ∀ai ∈ X \ {am−1} (i ∈ Z+), ∃x ∈ X and ∃y ∈ Y with x ̸= y
such that am + ai = x+ y. By taking ai = am−2, we have

am + am−2 = x+ y.

Since am > max{x, y}, then we must have x > am−2 and y > am−2. Thus,
x = y = am−1. A contradiction! Consequently, |(X+̂Y ) ∩ ({am}+̂A)| = |A| − 3.

Through the following computation,

|X+̂Y | = |(X+̂Y ) ∪ ({am}+̂A)| − |{am}+̂A)|+ |(X+̂Y ) ∩ ({am}+̂A)|
= |A+̂B| − (|A| − 1) + (|A| − 3)

= (|A|+ |B| − 3)− (|A| − 1) + (|A| − 3)

= (|A| − 1) + (|B| − 1)− 3

= |X|+ |Y | − 3,

we complete the proof that (X,Y ) is a critical pair.
□

Lemma 4. (A,B) is a critical pair and |A| ≥ 5. If B ⊆ A, then (A,B) is a
standard pair.
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ON THE ELEMENTARY PROOF OF THE INVERSE ERDÖS-HEILBRONN PROBLEM 9

Proof. Let’s use induction on |A| to prove Lemma 4.

When |A| = 5, define X = A \ {a5} and Y = B \ {bn}. According to Lemma 3,
a5 = bn and (X,Y ) is a critical pair. Since |X| = 4, according to Theorem 3, we
have X = Y = {a1, a2, a3, a4} and X+̂Y = {a1+a4, a2+a4, a3+a4, a1+a2, a1+a3}.
Apparently, A = B = {a1, a2, a3, a4, a5}. From the proof of Lemma 3, we know
that

|(X+̂Y ) ∩ (a5+̂A)| = |A| − 3 = 2.

It’s easy for us to observe that a2 + a4 = a5 + a1 and a3 + a4 = a5 + a2. By the
proof of Theorem 3, we also have a2 + a3 = a1 + a4. Consequently,

a5 − a4 = a4 − a3 = a3 − a2 = a2 − a1.

Thus, (A,B) is a standard pair.

Now, suppose Lemma 4 is true for |A| ≤ m − 1 (m ∈ Z,m > 5). Let’s consider
the case when |A| = m. Note A′ = A \ {am} and B′ = B \ {bn}, then (A′, B′)
is a critical pair and am = bn according to Lemma 3. Thus, by the induction
hypothesis, (A′, B′) is a standard pair. Without loss of generality, for some τ ,
d ∈ Z, we may assume that

A′ = B′ = {τ, τ + d, τ + 2d, · · · , τ + (m− 2)d}

with τ < τ + d < τ + 2d < · · · < τ + (m− 2)d.

From the proof of Lemma 3, we know that

|(A′+̂B′) ∩ (am+̂A)| = |A| − 3 = |am+̂A| − 2.

Thus, for ∀u ∈ A′ \ {τ + (m− 3)d, τ + (m− 2)d}, ∃v ∈ A′, w ∈ B′ such that

am + u = v + w.

When u = τ + (m − 4)d, max{v, w} ≥ τ + (m − 3)d. Without loss of generality,
assume that v ≥ w. Thus, v ∈ {τ + (m− 3)d, τ + (m− 2)d}.

If v = τ + (m − 3)d, then am = w + d. From the definition of am, we know that
am > τ + (m − 2)d. Because w ≤ τ + (m − 2)d, we must have w = τ + (m − 2)d.
Consequently, am = τ + (m− 1)d = bn.

If v = τ+(m−2)d, then am = w+2d. According to the definition of am, we know
that am > τ + (m − 2)d. Thus, since w ≤ τ + (m − 2)d, w ∈ {τ + (m − 3)d, τ +
(m − 2)d}. Note that w ̸= v, then there must be w = τ + (m − 3)d. Therefore,
am = τ + (m− 1)d = bn.

As a result, we always have

A = B = {τ, τ + d, τ + 2d, · · · , τ + (m− 2)d, τ + (m− 1)d}

with τ < τ + d < τ + 2d < · · · < τ + (m − 2)d < τ(m − 1)d. This completes our
induction. □

Lemma 5. Let finite sets A,B ⊆ Z be nonempty sets. If |A|, |B| ≥ 2 and B ⫋ A,

then |A+̂B| ≥ |A|+ |B| − 2.
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10 SHENGNING ZHANG

Proof. Suppose B ⫋ A, according to Lemma 2, we have

|A+̂B| ≥ |A|+ |B| − 3.

According to Lemma 4, if |A+̂B| = |A| + |B| − 3, then A = B. However, this
contradicts with B ⫋ A. Thus,

|A+̂B| > |A|+ |B| − 3.

Therefore, we have |A+̂B| ≥ |A|+ |B| − 2. □

Lemma 6. Let finite sets A,B ⊆ Z be nonempty sets. If |A|, |B| ≥ 2 and A ̸= B,
then |A+̂B| ≥ |A|+ |B| − 2.

Proof. Using Lemma 5, we only need to consider the case when A ̸= B and B ̸⊂
A. Without loss of generality, assume |A| ≥ |B|. If |A ∪B| = 0, then according to
Lemma 1, we have

|A+̂B| = |A+B| ≥ |A|+ |B| − 1 > |A|+ |B| − 2.

If |A ∪B| = 1, then note X = A ∪B. According to Lemma 1, we have

|A+̂B| ≥ |A+̂(B \X)| = |A+ (B \X)| ≥ |A|+ |B \X| − 1 ≥ |A|+ |B| − 2.

Thus, we only need to consider the case when |A ∪ B| ≥ 2. Since B ̸⊂ A, we have
A ∩B ⫋ A ∪B. Moreover, A ∩B, A ∪B ∈ Z and |A ∪B| ≥ 2. Thus, according to
Lemma 5, we have

|(A ∪B)+̂(A ∩B)| ≥ |A ∪B|+ |A ∩B| − 2 = |A|+ |B| − 2.

Notice that for any x ̸= y with x ∈ A ∪ B and y ∈ A ∩ B, if x ∈ A, then y ∈ B.
Thus, x+ y ∈ A+̂B. Similarly, if x ∈ B, then y ∈ A and thus x+ y ∈ A+̂B. As a
result,

(A ∪B)+̂(A ∩B) ⊆ A+̂B.

Therefore, |A+̂B| ≥ |(A ∪B)+̂(A ∩B)| ≥ |A|+ |B| − 2.
□

Back to the main problem, if (A,B) is a critical pair, Lemma 6 indicates that
A = B. Thus, we have B ⊆ A. According to Lemma 4, (A,B) is a standard pair
when |A| ≥ 5. This finishes our proof for the sufficiency of the conditions. □

5. Partial Results in Z/pZ

Theorem 5. Let sets A,B ⊆ Z/pZ be nonempty sets such that p ≥ |A| + |B| − 2
and am + bn < p. Then |A+̂B| = |A| + |B| − 3 if and only if A = B and one of
the following holds:

(1) |A| = 2 or |A| = 3;
(2) |A| = 4 and A = {a, a+ d, c, c+ d};
(3) |A| ≥ 5 and A is an arithmetic progression.

Proof. Since am + bn < p, we have a+ b < p for ∀a ∈ A, b ∈ B. This leads to

{a+ b : a ∈ A, b ∈ B, a ̸= b} = {a+ b mod p : a ∈ A, b ∈ B, a ̸= b}.
This equation here indicates that the proof is equivalent to the case in Z, which
we have completed.

□
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ON THE ELEMENTARY PROOF OF THE INVERSE ERDÖS-HEILBRONN PROBLEM 11

Theorem 6. Let sets A,B ⊆ Z/pZ be nonempty sets such that p ≥ |A| + |B|,
where p is a prime. Suppose |A| ≥ 5 and (A,B) is a critical pair. Given d as an
arbitrary generator of Z/pZ, then length of the longest gap in B with respect to d
is not less than |A|.

Proof. Let A = {τ + id : i = 0, 1, · · · , |A|−1} and B = {xid : i = 0, 1, · · · , |B|−1},
where τ ∈ Z/pZ and xi ∈ Z+ ∪ {0}. Define the length of the longest gap in B
with respect to d as t and suppose t ≤ |A| − 1.

Without loss of generality, assume τ = 0, or else use

A′ = {id : i = 0, 1, · · · , |A| − 1}

and

B′ = {xid− τ : i = 0, 1, · · · , |B| − 1}
to represent A and B. Since 0 ∈ A, apparently B \ {0} ⊆ A+̂B.

Define sets Bi ⊆ B as the following:

Bi = {mid, (mi + 1)d, · · · , m̂id} (mi ≤ m̂i),

where mi+1 − m̂i ≥ 1. By definition, we can get a partition of B, where I a finite
set of positive integers and B = ⊔i∈IBi. Note B1 = {Bi : m̂i > t} and B2 = {Bi :
m̂i ≤ t} = {B1, B2, · · · , Bk} (1 ≤ k ≤ |B|).

We first claim that for ∀g ∈ Z+ ∪ {0}, gd ∈ A+̂B if there ∃j ∈ I such that
m̂j < g < mj+1 and m̂j > m̂k.

In particular, if 0 ≤ g < m1 then gd ∈ A+̂B. Observing that g − m̂j < mj+1 −
m̂j ≤ t + 1 ≤ |A|, we have g − m̂j ≤ |A| − 1 and thus (g − m̂j)d ∈ A. Since

m̂j > m̂k, m̂j > t ≥ g − m̂j . Then gd = (g − m̂j)d+ m̂jd ∈ A+̂B.

We now proof that for ∀xd ∈ A, if x ̸= 2m̂i (i = 1, 2, · · · , k), then xd ∈ A+̂B.

To prove this claim, assume that m̂i < x < mi+1 for some i ∈ I. Again

xd = (x− m̂j)d+ m̂jd ∈ A+̂B,

unless (x− m̂j)d = m̂jd, which indicates x = 2m̂i.

For i = 1, 2, · · · , k, if |Bi| ≥ 2, then 2m̂id ∈ A+̂B, because (m̂i − 1)d ∈ B and
2m̂id = (m̂i + 1)d+ (m̂i − 1)d.

For i = 1, 2, · · · , k, if there exists m̂i−1 and mi+1 such that m̂j−1 < m̂i < mi+1,

then we claim that 2m̂id ∈ A+̂B.

Note that 0 ≤ m̂i−1 < m̂i < mi+1. If 2m̂id /∈ A+̂B, then 2m̂i < mi+1. Therefore,

mi+1 − m̂i > m̂i ≥ m̂i − m̂i−1.

So, 2m̂i − m̂i−1 < mi+1 ≤ m̂i+1 ≤ t ≤ |A| − 1. Thus, (2m̂i − m̂i−1)d ∈ A. This
further leads to 2m̂id = (2m̂i − m̂i−1)d+ m̂i−1d ∈ A+̂B.
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12 SHENGNING ZHANG

Combining all these claims, we find the only possible elements in Z/pZ that are
not in A+̂B:

(1) m̂1, if m̂1 = 0;

(2) 2m̂1;

(3) 2m̂k.

Apparently, the first two cases can not happen together at the same time unless
m̂1 = 2m̂1 = 0. So, at most two elements in Z/pZ are not in A+̂B. This gives
|A+̂B| ≥ p− 2 ≥ |A|+ |B| − 2. A contradiction! Thus, we must have t ≥ |A|.

□

Theorem 7. Let sets A,B ⊆ Z/pZ be nonempty sets such that p ≥ |A| + |B|,
where p is a prime. Suppose |A| ≥ 5 and (A,B) is a critical pair. If A is a stan-
dard set, then (A,B) is a standard pair.

Proof. Define A and B in the same way as in Theorem 6. According to Theorem
6, the length of the largest gap in B with respect to d is not less than |A|. De-
note the largest gap as [u, v]d, then (u − 1)d ∈ B. A = {id : i = 0, 1, · · · , |A| − 1}
gives

{(u− 1)d}+̂A = {(u− 1 + i)d : i = 0, 1, · · · , |A| − 1} ⊆ A+̂B.

Since 0 ∈ A, {0}+̂B ⊆ A+̂B. According to the definition of u, we know that

({(u− 1)d}+̂A) ∩ ({0}+̂B) = {(u− 1)d}.
Observing that

|A+̂B| = |A|+ |B| − 3

≥ |({(u− 1)d}+̂A) ∪ ({0}+̂B)|
= |({(u− 1)d}+̂A)|+ |({0}+̂B)| − 1

≥ (|A| − 1) + (|B| − 1)− 1

= |A|+ |B| − 3,

all equalities must hold. Therefore, {(u− 1)d} ∈ A, 0 ∈ B and

(5.1) A+̂B = ({(u− 1)d}+̂A) ∪ ({0}+̂B).

Define X = ({(u − 1)d}+̂A) ∪ ({0}+̂B). We can prove that (w + 1)d ∈ B for
∀wd ∈ B with w ̸= 1 and w ̸= (u− 1). If not, (w + 1)d ∈ (A+̂B) \X, which is not
possible. Applying this argument, we get d ∈ B, for 0 ∈ B. Similarly, consider
0 + 2d, then 0 + 2d = 2d ∈ B. So we have xd ∈ B for ∀x /∈ [u, v]d by repeating
the previous argument. In particular, B is a standard set and B = {b + td : t =
0, 1, · · · , |B| − 1}.

Now, we can apply a similar argument as [7] to prove that (A,B) is a standard
pair. We have A+̂B = {sd+(b+ td) : 0 ≤ s ≤ |A|−1, 0 ≤ t ≤ |B|−1, sd ̸= b+ td}.
Since sd + (b + td) = (s ± 1)d + b + (t ∓ 1)d, then even if sd = b + td, we have
the sum be written into the sum of two distinct elements from A and B unless
s = t = 0 or s = |A| − 1 and t = |B| − 1. Therefore, A+̂B = A + B unless
b = 0 or (|A| − 1)d = b + (|B| − 1)d. By putting b′ = b + (|B| − 1)d and
forming the arithmetic progression with the common difference d′ = −d, we can
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ON THE ELEMENTARY PROOF OF THE INVERSE ERDÖS-HEILBRONN PROBLEM 13

reduce the second case to the first one. So, A+̂B = A + B unless b = 0. Since
A+B ≥ min{p, |A|+ |B| − 1} > |A|+ |B| − 3, we must have b = 0.

Thus, we can write

A+̂B = {sd+ td mod p : sd ∈ A, td ∈ B, sd ̸= td}.
If sd = td for s ̸= t (say without the loss of generality that s > t), then

(s− t)d ≡ 0 mod p.

Because d ̸≡ 0 mod p, p | (s− t). By our definition for p,

|A| ≥ (s− t) ≥ p > |A|+ |B| > |A|,
which is a contradiction. We now must conclude that sd = td implies s = t.

Again, for the case where sd = td, we can write

sd+ td = (s± 1)d+ (t∓ 1)d,

unless s, t = 0 or s = t = |A| − 1 = |B| − 1. However, if |A| ≠ |B|, then we only
get the case s = t = 0, which means that

|A+̂B| ≥ |A+ (B \ {0})| ≥ |A|+ (|B| − 1)− 1 = |A|+ |B| − 2,

which is also a contradiction. Therefore, we must have |A| = |B| and this com-
pletes the proof.

□

6. Concluding Remarks & Further Thoughts

We have given an elegant and completely elementary proof for the inverse Erdős-
Heilbronn problem in Z and give some partial results on the elementary proof
for the inverse Erdős-Heilbronn problem in Z/pZ. Our strategies in Z need to be
further improved to apply to Z/pZ, for we are considering the equations under
the meaning of module p in Z/pZ.

For Theorem 5, we add the technical condition of am + bn < p in order to apply
the theorems that we have obtained in Z to Z/pZ. For Theorem 6 and Theorem
7, we drop this technical condition and ask p ≥ |A|+|B| instead of p ≥ |A|+|B|−2
in the case of Z to complete the proof of our results.

Through Theorem 7, we improve Theorem 5.1 in [7], which gives an elementary
proof of the inverse Erdős-Heilbronn problem in Z/nZ under the condition that
elements in sets A and B for arithmetic progressions with the same common dif-
ference, by giving an elementary proof in Z/pZ that only requires p ≥ |A| + |B|
and A to be a standard set.

Moreover, we may very likely guess that an elementary proof in Z/pZ can be
achieved through an analogy of Vosper’s elementary proof [9] on the inverse Cauchy-
Davenport problem.

In addition, through of elementary proof in the case of Z, we give an explicit de-
scription of A+̂B as the union of (amax+̂B) ∪ (A+̂bmin), so we may expect in
general, when |A+̂B| is close to |A| + |B| in Z, A+̂B could almost be written as
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14 SHENGNING ZHANG

a union of such copies. Similar results may very possibly be found in Z/pZ if a
completely elementary proof is found as hinted by (5.1).
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