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Study of the loci of configurations of points

Zimu Wang

Abstract

We study in this work the configurations of points in projective spaces. We consider
locus of configurations such that the number of linear independent hypersurfaces of a
given degree is greater or equal to a given value. This locus is shown to be a projective
variety. We prove some existence and connectedness results for this variety when the
base field is algebraically closed. We also calculate the number of elements of this
projective variety when the base field is a finite field.
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1 Introduction
We study in this article the configurations of points in projective spaces. Let k be a field
and let r be a positive integer. Let p1, . . . , pd be d points in the projective space Pr(k). It is
natural to ask the number of linearly independent hypersurfaces of a given degree k passing
through these d given points. Here, a series of hypersurfaces of degree k is called linearly
independent if the defining polynomials are linearly independent in the vector space of all
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degree k homogeneous polynomials. To start with, let us use an example to demonstrate the
subtlety of this problem.

Example 1. Consider 5 distinct points p1, . . . , p5 on the real projective plane P2(R). If these
5 points are in the general position, that is, no three points of them lie on the same straight
line, then there is exactly 1 conic passing through these 5 points. For the other extreme,
if these 5 points all lie on a same straight line L, then by the Bézout’s theorem, any conic
passing through these 5 points must have a component that coincides with L. The choice of
the other component (which is another straight line) forms a three dimensional vector space.
Hence, for these 5 points, there are 3 linearly independent conics passing through them.

This easy example already shows that the number of independent hypersurfaces is related
to the configuration of the points. Motivated by this, let us define

Definition 1. A configuration of d points in the projective space Pr(k) is an unordered d-tuple
(x1, . . . ,xd), where x1, . . . ,xd are points in Pr(k) which are not necessarily distinct.

Let Pr(k)(d) denote the set of all configurations of d points in Pr(k). It is well-known [9]
that Pr(k)(d) is a projective variety, and that the canonical map Pr(k)d → Pr(k)(d), sending
ordered d-tuples onto the corresponding unordered ones, is a morphism of algebraic varieties.

Definition 2. For a given configuration S∈Pr(k)(d), we define i(k,S) to be the number of lin-
early independent hypersurfaces of degree k passing through the d points in the configuration
S.

Example 2. Let us return to Example 1. Consider configurations S ∈ P2(R)(5). If the points
in S are in the general position, then i(2,S) = 1. If the 5 points in S are distinct and lie on the
same straight line, then i(2,S) = 3.

The function i(k,S) has the following properties.

Proposition 1. (i) Fix k ∈ N. The map

Pr(k)(d) → N
S 7→ i(k,S)

is upper-semicontinuous with respect to the Zariski topology of Pr(k)(d). In other words,
given β ∈ N, the subset {S ∈ Pr(k)(d) : i(k,S)≥ β} ⊂ Pr(k)(d) is Zariski closed.
(ii) Fix S ∈ Pr(k)(d). The map k 7→ i(k,S) is increasing. Furthermore, for k large enough,
i(k+1,S)> i(k,S).

This proposition motivates us to define the following object.

Definition 3. Let r,d,k,β be natural numbers. Define Rr,d
k,β (k) to be the subset

{S ∈ Pr(k)(d) : i(k,S)≥ β}.
2
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Proposition 1 (i) shows that Rr,d
k,β (k) is a projective variety. The study of this geometric

object for different fields occupies the main part of the article.
Our study of Rr,d

k,β (k) contains to two main themes. The first one consists of studying the

geometric or topological properties of Rr,d
k,β (k) when k is algebraically closed field. The main

result we obtain in this direction is

Theorem 1. Let k be an algebraically closed field.
(i) The set Rr,d

k,β (k) is nonempty if and only if β ≤
(r+k

r

)
−1.

(ii) The projective variety Rr,d
k,β (k) is connected with respect to the Zariski topology, if it is

nonempty.

The second theme of our study is to count the number of elements in Rr,d
k,β (k) when k is a

finite field. In the statement of the following theorems, we let k = Fq be the finite field with
q elements where q = pn is a power of a prime number p. To be able to state the theorem, let
us define a sequence {αd} recursively as follows. For d ≤ r+ 1, αd = (qr+1−1)...(qr+1−qd−1)

(q−1)d .

For d > r+1, αd := αd−1.max{qr+1−1
q−1 −

(d−1
r

)qr−1
q−1 ,0}.

Theorem 2. Assume β ≥ max{
(k+r

r

)
− d + 1,

(k+r
r

)
− kr}. Then the number of elements in

Rr,d
k,β (Fq) is less than or equal to

(
q.qr−1

q−1 +d
d

)
− αd

d!
.

Example 3. Let us use the estimate in the above theorem to do some explicit calculations.
When r = 2, d = 5, k = 3 and q = 5. Our estimate gives |R2,5

3,6(F5)| ≤ 324632. It means that
there are less than or equal to 324632 configurations of 5 points (not necessarily distinct) in
the projective plane over the field F5 that can be passed by at least 6 linearly independent
plane quintic curves.

Our estimate in the above theorem is far from optimal. The difficulty comes from the
increasing complexity of the configurations of hyperplanes in the projective space when the
number of points is large. However, it can be expected that better upper bounds can be
obtained if we make finer analysis on the configurations when the dimension of the projective
space and the number of points are small. Indeed, in Section 4.2, we give sharper upper
bounds for the number of elements in R2,d

k,β (Fq) for β ≥ max{ (k+2)(k+1)
2 −d +1, (k+2)(k+1)

2 −
2k} and d < 10. Since the formula is quite complicated, in the Introduction let us only
present the result when k = 3 and q = 5 in the following table. The general formula is given
in Proposition 7 and is a function in q. One can compare the result when d = 5 in the table
with Example 3.
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d β upper bound for |R2,d
3,β (F5)|

1 10 0
2 9 31
3 8 1581
4 7 30876
5 6 306032
6 5 1944692
7 4 10295472
8 4 48903492

When d is relatively small, we can get the explicit value of Rr,d
k,β (k):

d = 1

|Rr,1
k,β (Fq)|=

{
0 if β >

(k+r
r

)
−1

qr+1−1
q−1 if β ≤

(k+r
r

)
−1

.

d = 2

|Rr,2
k,β (Fq)|=


0 if β ≥

(k+r
r

)
qr+1−1

q−1 if β =
(k+r

r

)
−1( qr+1−q

q−1 +2
2

)
if β ≤

(k+r
r

)
−2

.

d = 3

|Rr,3
k,β (Fq)|=



0 if β ≥
(k+r

r

)
qr+1−1

q−1 if β =
(k+r

r

)
−1

2 ·
( qr+1−1

q−1
2

)
+ qr+1−q

q−1 if β =
(k+r

r

)
−2 and k ≥ 2

2 ·
( qr+1−1

q−1
2

)
+ qr+1−q

q−1 +
( qr+1−1

q−1
2

)
(q−1) if β =

(k+r
r

)
−2 and k = 1( qr+1−1

q−1 +2
3

)
if β ≤

(k+r
r

)
−3

.

2 Zariski topology and Basic properties of i(k,S)

2.1 Zariski topology
We have to present a kind of topology, the Zariski topology, that we often use in algebraic
geometry, in order to describe the connectedness of Rr,d

k,β (k) and the continuity of some maps
we will construct. We will first define the Zariski topology in affine spaces, which is the base
for us to define the Zariski topology in other more complicated spaces.

4

仅
用
于

20
22
丘
成
桐
中
学
科
学
奖
公
示

20
22

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

s



Definition 4. Let I be a set of polynomial in k[x1, . . . ,xn], where k[x1, . . .xn] is the set of
polynomials in x1, . . .xn with coefficients in the field k. Define V (I) to be the set {x ∈ An(k) :
for any f ∈ I, f (x) = 0}. A subset F ⊂ An(k) is called Zariski closed, if there exists I ⊂
k[x1, . . . ,xn], satisfying F =V (I).

Then we generalize the Zariski topology on affine space to projective space using a gen-
eral method which we call the process from local to global. This process is based on the
lemma below

Lemma 1. Let X be a set and let {Ui}i∈I be a family of subsets of X, satisfying that
⋃
i∈I

Ui = X.

Assume that for each i ∈ I, there is given a topology on Ui, such that for each pair i, j ∈ I,
Ui ∩U j is an open subset of U j. Then, there is a canonical way to endow X with a topology,
satisfying that each Ui ⊂ X is open in X and that the given topology of Ui coincides with the
induced topology from X.

Proof We define the topology of X as follows: a subset V ⊂ X is defined to be open if and
only if for each i ∈ I, V ∩Ui ⊂Ui is open. First, let us check that this definition indeed gives
a topology of X .

Claim. (1) ∅ and X are open in X.
(2) The union of any open subsets is still open.
(3) The intersection of two open subsets is still open.

Proof (1) is obvious. Let us prove (2). Let {Vi}i∈J be a family of open subsets in X . It is
easy to know that for each j ∈ I,

(
⋃

Vi)∩U j =
⋃
(Vi ∩U j)

With the definition, (Vi ∩U j) are open in U j, so
⋃
(Vi ∩U j) is open in U j, which means that⋃

i∈J

Vi ∩U j is open in U j for each j ∈ I. Therefore, the union of any open subsets in X is

still open. Now let us prove (3). Let V1, V2 be two open subsets in X . For each j ∈ I,
(V1 ∩V2)∩U j = (V1 ∩U j)∩ (V2 ∩U j). By definition, (V1 ∩U j) and (V2 ∩U j) are open in U j,
which implies that (V1 ∩V2)∩U j is open in U j for each j. Therefore, the intersection of two
open subsets in X is still open. □

Now let us prove the second statement. Each Ui is open in X since for each j ∈ I, Ui ∩U j
is open in U j. To show that the induced topology of Ui coincides with its original topology,
we need to check that for each open subset V in X , V ∩Ui is open in Ui. But this follows
directly from the definition of openness of subsets of X . □

With lemma 1, we can naturally define the Zariski topology on projective spaces.

Lemma 2. There exists a family of subsets {Ui}i={0,...,r} ⊂ Pr(k), satisfying that
⋃

Ui =
Pr(k), and Ui ∼= Ar(k).

5
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Proof The elements in Pr(k) can be represented in the form [x0 : . . . : xr], where not all xi
are 0. Let Ui ⊂ Pr(k) be the subset where vectors satisfy that xi ̸= 0. Therefore, the elements
in Ui can be represented in the form [x0

xi
, . . . , xi−1

xi
, xi+1

x1
, . . . , xr

xi
], which is naturally morphism to

Ar(k) □

Definition 5. We have already known that Pr(k)=U0∪ . . .∪Ur, where Ui ∼=Ar(k). Following
the from-local-to-global process in Lemma 2, a subset V ⊂ Pr(k) is defined to be open if and
only if for each i ∈ {0, . . . ,r}, V ∩Ui ⊂Ui is open, where the topology of Ui is the same as the
Zariski topology on affine space, in definition 4

In order to make the definition of Zariski topology more complete, we will introduce the
definition the product topology and the quotient topology.

Definition 6. Let X1, . . . ,Xs be topological spaces. There is a canonical way to define a
topology on X1 × . . .×Xs as follows: a subset V of X1 × . . .×Xs is open if and only if V is a
union of subsets of the form U1 × . . .×Us, where U j ⊂ X j is open for each j = 1, . . . ,s.

Remark 1. (1) It is easy to check that the definition above does give a topology on X1,× . . . ,×Xs.
(2) We use the same way to define the topology of (Pr)d = Pr × . . .×Pr.

Lemma 3. Let X ,Y1, . . . ,Yr be topological spaces and let f : X → Y1 × . . .×Yr be a map.
The map f is continuous, if and only if for each i ∈ {1, . . .r}, the map fi := pri ◦ f : X → Yi
is continuous, where pri : Y1 × . . .×Yr 7→ Yi where Ui ⊂ Yi is the projection map to the i-th
component.

Proof First, we will prove that if f is continuous, the maps fi are continuous. Let i be
fixed. Let V ⊂ Yi be an open subset. We can find that f−1

i (V ) = f−1(Y1 × . . .×V × . . .×Yr).
Since f is continuous, f−1(Y1× . . .×V × . . .×Yr) is open, which means that f−1

i (V ) is open,
implying that fi is continuous. Since i is chosen freely, for any i ∈ {1, . . .r}, fi is continuous.
Then, we will prove that if for each i ∈ {1, . . .r}, fi is continuous, f is continuous. Let
V ⊂ Y1 × . . .×Yr be open, then

V =
⋃

i

Ui1 × . . .×Uir,

where Ui j ⊂ Yj are open set. We can find that

f−1(Ui1 × . . .×Uir) =
n⋂

j=1

f−1
j (Ui j).

Since f j are continuous, f−1
j (Ui j) are open, and then

n⋂
j=1

f−1
j (Ui j) is open. Hence, f−1(Ui1×

. . .×Uir) is open. Therefore,

f−1(V ) =
⋃

i

f−1(Ui1 × . . .×Uir)

is open, suggesting that f is continuous. □
6
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Definition 7. Let X be a topological space, Y be a set and f : X → Y be a surjective map.
Then, we can define canonically a topology on Y , called the quotient topology of Y with
respect to f : X →Y , as follows: a subset V ⊂Y is defined to be open if and only f−1(V )⊂ X
is open.

Remark 2. We have already known the product and quotient topology, we can get the Zariski
topology on (Pr(k))(d). There is a canonical surjective map π : (Pr(k))d → (Pr(k))(d). We
define the topology on (Pr(k))(d) to be the quotient topology with respect to π .

Proposition 2. Let g : Am(k) → An(k) be a polynomial map. Then g is continuous with
respect to the Zariski topology.

Proof Let g :Am(k)→An(k) be a polynomial map, F ⊂An(k) be a closed subset of An(k),
i.e. there are fi ∈ k[x1, . . . ,xn], where i ∈ I, satisfying that F = { fi(x) = 0, i ∈ I}. Then, it
is easy to know that g−1(F) = { fi ◦ g(x) = 0, i ∈ I}, which means that g−1(F) is closed in
Am(k). Therefore, g is continuous. □

2.2 Basic properties of the function i(k,S)

In this section, we want to do some researches about the topology and other geometry proper-
ties of the function i(k,S) defined in Definition 1 in the Introduction and prove Proposition 1
in several steps.

Definition 8. Let i(k,S) be the number of linear independent hypersurfaces of degree k in Pn

passing through S
i : N× (Pr)(d) → N

Proposition 3. Fix a configuration S ∈ Pr(k)(d), the function i(k,S) increases with respect to
k, and when k is large enough, it strictly increases with respect to k.

Proof. Let n = i(k,S). Let { f j} j={1,...,n} be polynomials of degree k that are linearly in-
dependent and pass through S. Let us consider i(k+ 1,S). Let S = (p1, . . . , pd) ∈ Pr(k)(d)
and we may regard p1, . . . , pd as nonzero vectors in kr+1. The homogeneous polynomials
{x0 · f j} j∈{1,...,n} are of degree k + 1, linearly independent and pass through S. Therefore,
i(k+1,S)≥ n = i(k,S). Now let us show that this inequality is strict when k is large enough.
To see this, first notice that i(k,S) = dim kerψS,k = dim kk[x0, . . .xr]− rankψS,k, where

ψS,k : kk[x0, . . .xr] → kd

f 7→ ( f (p1), . . . , f (pd)).

One needs to remark that the definition of ψS,k depends on the choice of homogeneous coor-
dinates of each point pi in the configuration S, making the definition of ψS,k apriori not well-
defined. However, as far as we are concerned in this article, only the rank of ψS,k is needed for
us, and this rank is independent of the choice of the homogeneous coordinates of each point.
In fact, no matter the choice of homogeneous coordinates chosen for each point, the kernel
of the linear map ψS,k in kk[x0, . . . ,xr] is the same. Since ImψS,k

∼= kk[x0, . . . ,xr]/kerψS,k, the
dimension of ImψS,k does not depend on the choice of the homogeneous coordinates. Hence,
the rank of ψS,k is well-defined.

7
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Claim. The rank of ψS,k increases with respect to k.

Proof We may assume that k is an algebraically closed field, since if k is not algebraically
closed field, we can take the field extension of k as the field of ψS,k, which has not influence on
the rank of ψS,k. Since p1, . . . , pd ∈ Pr(k) are finitely many points, we may find a hyperplane
passing through none of these points. Let L be the line function defining this hyperplane.
Then L(pi) ̸= 0, for each i. Since the coordinate of each pi can be chosen up to a nonzero
constant without changing the rank of ψS,k or ψS,k+1. As shown in the above remark, we may
choose the homogeneous coordinate of each pi with care to be able to assume L(pi) = 1 for
each i. Let Ik be the image of ψS,k : kk[x0, . . .xr]→ kd and similarly let Ik+1 be the image of
ψS,k+1. We want to show that Ik ⊂ Ik+1. Let (yi, . . . ,yd) ∈ Ik, which means that there exists
f ∈ kk[x0, . . .xr], satisfying that yi = f (pi) for each i. Then, for g = L · f ∈ kk+1[x0, . . .xr], we
have (1 · y1, . . . ,1 · yd) = (g(p1), . . . ,g(pd)) ∈ Ik+1. Therefore, Ik ⊂ Ik+1, which means that
the rank of ψS,k increases with respect to k. □

By the above claim, the rank of ψS,k increases with respect to k, and rankψS,k ≤ d, so
there exists a K ∈N satisfying for any k > K, rankψS,k+1 = rankψS,k. But dim kk[x0, . . .xr] =(k+r+1

r

)
is strictly increasing. Therefore, when k > K, i(k+1,S)> i(k,S).

Here is an example that i(k+1,S) = i(k,S): let S ∈ (P2)(10), S can be general enough that
i(2,S) = i(1,S) = 0

Here is also an interesting topological property of i(k,S).

Proposition 4. Fix k ∈ N, the map S 7→ i(k,S) is upper semi-continuous with respect to the
Zariski topology of (Pr)(d)

Proof. Let V,W be two vector spaces with dimension n and m. By choose base of V and W ,
Hom(V,W )∼= Matn×m(k)∼= Anm(k). Let

Homrank≥r(V,W ) = {ψ : V →W is a linear map, satisfying rankψ ≥ r}

For any n×m matrix whose rank≥ r, there exists r× r submatrix of it whose determinant is
not 0. Therefore, Homrank≥r(V,W ) is open in Hom(V,W ) with respect to the Zariski topol-
ogy.

ϕ : (Ar+1)d → Hom(kk[x0, . . . ,xr],kd)
S 7→ ψS,k

Via ϕ , (Ar+1)d can be regarded as a subset of Hom(kk[x0, . . . ,xr],kd). Hence, the topology of
(Ar+1)d can be generated from Hom(kk[x0, . . . ,xr],kd), which means that {S= (v1, . . . ,vd)∈
(Ar+1 −{0})d : rankψS,k ≥ a constant} is open. Assume that i(k,S) ≤ n,n ∈ Z, rankψS,k =

dim kk[x0, . . .xr]− dim kerψS,k ≥
(k+r+1

r

)
− n. Hence, {S ∈ (Ar+1 −{0})d : i(k,S) ≤ n} is

open. (Pr)(d) ∼= (Ar+1 −{0})d . Therefore, for any n, {S ∈ (Pr)(d) : i(k,S) ≤ n} is open,
which means that i(k,S) is upper-semi-continuous.
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3 Existence and connectedness results
In this section, we will try to explore the existence and connectedness results of the projective
variety Rr,d

k,β (k). First, we will introduce some basic definitions and tools we would use in the
proof. We assume in this section that the field k is an algebraically closed field.

3.1 Existence result
Before talking about the properties of Rr,d

k,β (k), we want to decide whether the Rr,d
k,β (k) is an

empty set or nonempty set.

Theorem 3. Rr,d
k,β (k) ̸=∅, if and only if β ≤

(k+r
r

)
−1.

Proof. First, we will prove that if Rr,d
k,β (k) ̸= ∅, β ≤

(k+r
r

)
− 1 by reduction to absurdity.

We assume that β ≥
(k+r

r

)
. Since Rr,d

k,β (k) ̸= ∅, there exists a configuration S ∈ Rr,d
k,β (k).

By definition, i(k,S) ≥ β ≥
(k+r

r

)
. However, i(k,S) = dim ker(ψk,S : kk[x0, . . . ,xr]→ kd) =

dimkk[x0, . . . ,xr]− rank(ψk,S : kk[x0, . . . ,xr]→ kd). Hence, rank(ψk,S : kk[x0, . . . ,xr]→ kd)≤(k+r
r

)
− i(k,S)≤ 0. Therefore, ψk,S is a zero map, which is impossible. In fact, for any point

p ∈ Pr(C) appeared in S, there exists a polynomial f ∈ kk[x0, . . . ,xr], satisfying f (p) ̸= 0.
Hence, ψk,S( f ) ̸= 0, which is contradicting to the fact that ψ(k,S) is a zero map. Therefore,
if Rr,d

k,β (k) ̸= ∅, β ≤
(k+r

r

)
− 1. Then, we will prove that if β ≤

(k+r
r

)
− 1, Rr,d

k,β (k) ̸= ∅.
There exists configurations S = (p, p, . . . , p, p), where p ∈ Pr(k). In this case, rankψk,S = 1,
so i(k,S) =

(k+r
r

)
− 1. Therefore, if β ≤

(k+r
r

)
− 1, S = (p, p, . . . , p, p) will be in Rr,d

k,β (k),

which means that Rr,d
k,β (k) ̸= ∅. Therefore, we can say that Rr,d

k,β (k) ̸= ∅, if and only if

β ≤
(k+r

r

)
−1.

3.2 Connectedness result
Now, we have already had the tools and conditions we need. We will then explore the topo-
logical proposition of Rr,d

k,β (k) with respect to the Zariski topology. The method for us to

prove the connectedness of Rr,d
k,β (k) is to construct a connected structure. In this subsection,

the topology we use is the Zariski topology. First, we will construct the structure we use.

Definition 9. Let X be a projective variety over k. The variety X is called continuously
rational-chain connected, if for any points x, y ∈ X, there is a sequence of points x = x0,
x1, . . .xr−1, xr = y in X, satisfying that each pair of adjacent points in the sequence can
be connected by a rational curve, i.e., for each i ∈ {1, . . . ,r}, there is a continuous map
ϕi : A1(k)→ X, satisfying that ϕi(0) = xi−1, ϕi(1) = xi.

With the definition of continuously rational-chain connected projective variety, we will
explore the proposition of it, which is essential for our proof of the connectedness of Rr,d

k,β (k).

9
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Proposition 5. A continuously rational-chain connected projective variety is connected.

Proof We will prove this proposition by contradiction. Assume that X is continuously
rational-chain connected, but X is not connected. There exists two nonempty open subsets U ,
V ⊂X , satisfying that U∪V =X , and U∩V =∅. Take x∈U , y∈V . By the assumption, there
exists a sequence of points x = x0, x1, . . .xr−1, xr = y, satisfying that for each i ∈ {1, . . . ,r},
there is a continuous map ϕi : A1(k)→ X , satisfying that ϕi(0) = xi−1, ϕi(1) = xi. Let Ci be
Imϕi ⊂ X . Let i ∈ {1, . . . ,r} be the maximal satisfying that pi−1 ∈U , so pi ∈ V . Therefore,
U ∩Ci ̸= ∅, V ∩Ci ̸= ∅. Since ϕi is continuous, ϕ

−1
i (U), ϕ

−1
i (V ) ⊂ A1(k) are nonempty

open subsets and ϕ
−1
i (U)∩ϕ

−1
i (V ) =∅, and ϕ

−1
i (U)∪ϕ

−1
i (V ) =A1(k), which contradicts

the connectedness of A1(k). Therefore, a continuously rational-chain connected projective
variety is connected. □

Now, we will prove the final theorem of connectedness of Rr,d
k,β (k).

Theorem 4. If Rr,d
k,β (k) is nonempty, then it is continuously rational-chain connected.

Proof Let S, S1 be configurations in Rr,d
k,β (k). Let p′ be a point lying neither in S nor in S1.

Let P = {p′, . . . , p′} ∈ Pr(k)(d). Then, P ∈ Rr,d
k,β (k), since Rr,d

k,β (k) is nonempty.

Claim. There exist a continuous map fi : A1(k)→ Rr,d
k,β (k), satisfying that fi(0) = Si, fi(1) =

P.

Proof We will first construct a map

f : A1(k) → Pr(k)(d)
t 7→ St

St will be defined later in this part. The map f factors through the following commutative
diagram defining f̃ :

A1(k) Pr(k)d

Pr(k)(d)

f̃

f
π

,

which means that f = π ◦ f̃ . We will still use the configuration S defined above in the proof.
S = (p1, . . . , pd) ∈ Pr(k)(d), where (p1, . . . , pd) is an unordered d-uple of points in Pr(k).
Let S̃ = (p1, . . . , pd) ∈ Pr(k)d be an ordered d-uple corresponding to the same points of S.
There are d! ways of arrangement for S̃, and we just need to randomly choose one of them.
Let St = (p1(t), . . . , pd(t)) ∈ Pr(k)(d), where p1(0) = pi, pi(1) = p′, for each i ∈ {1, . . . ,d}.
Then, we can similarly define S̃t as St = (p1(t), . . . , pd(t)) ∈ Pr(k)d which corresponds the
points of S. Then, we will get the new map:

f̃ : A1(k) → Pr(k)d

t 7→ S̃t
10
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Then, we want to see the relationship between f and f̃ . For any open sets V ⊂ Pr(k)(d),
f−1(V ) = (π ◦ f̃ )−1(V ) = f̃−1(π−1(V )). With the respect to definition 7, π−1(V ) is open.
Therefore, we can say that f is continuous if and only if f̃ is continuous. Then, we will start
to show that f̃ is continuous. Due to lemma 2.1, it suffices to show the following map is
continuous:

f̃i : A1(k) → Pr(k)
t 7→ pi(t)

Let U = Pr(k)−H, where H is a hyperplane in Pr(k), satisfying that Pr(k)−H contains all
the points of S, S1 and P. Up to a projective transformation, we may assume that the defining
equation of H is {x0 = 0}, so here is a canonical isomorphism that U ∼= Ar(k):

[x0 : . . . : xr] 7→ (
x1

x0
, . . .

xr

x0
).

Hence, it suffices to show the following map is continuous:

f̃i : A1(k) → U ∼= Ar(k)
t 7→ t p′+(1− t)pi

Since p′ is chosen arbitrarily, we can let p′ be the original point in U after the isomorphism
above. Therefore, the map f̃i can be represented as following:

f̃i : A1(k) → U ∼= Ar(k)
t 7→ (1− t)pi

We can see clearly that f̃i is a polynomial map from an affine space to affine space. Due
to Lemma 2.1, the map f̃i is continuous. Therefore, f is a continuous map, satisfying that
f (0) = S, f (1) = P.

Claim. For each t ∈ A1(k), St∈ Rr,d
k,β (k).

Proof We first prove that when t ̸= 1, i(k,S) = i(k,St). In fact, for t ̸= 1, there is a projective
transformation

Tt : Pr → Pr

[x0 : . . . : xr] 7→ [x0 : (1− t)x1 : . . . : (1− t)xr]

that sends S onto St . Hence, S and St are projectively equivalent. Therefore, i(k,S) = i(k,St),
which implies that when t ̸= 1, St ∈ Rr,d

k,β (k). When t = 1, St = P. Due to the proof of

Theorem 3, it is easy to see that P is in Rr,d
k,β (k), Therefore, for each t ∈ A1(k), St∈ Rr,d

k,β (k).
□

In fact, there exists a continuous map fi : A1(k) → Rr,d
k,β (k), satisfying that fi(0) = Si,

fi(1) = P, which is a segment of f . □
With the claim, for S and S1, there is a continuous map f1 : A1(k)→ Rr,d

k,β (k), satisfying

that f1(0) = S, f1(1) = P, and a continuous map f2 :A1(k)→ Rr,d
k,β (k), satisfying that f2(0) =

P, f2(1) = S1. Therefore, Rr,d
k,β (k) is continuously rational-chain connected. □
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Corollary 1. If Rr,d
k,β (k) is nonempty, it is connected.

Proof It is a direct consequence of Proposition 5 and Theorem 4 □

4 Counting results

In this section, we estimate and calculate the number of elements in Rr,d
k,β (Fq) for a finite field

Fq with q elements.

4.1 Points in the general position
In this section, we will first introduce a general estimate of the number of points in general
position. Then, we will show the accurate number of points in the general position in some
special cases.

Definition 10. Let S = (p1, . . . , pd) ∈ Pr(Fq)
(d) be a configuration. S is called in the general

position, if the points p1, . . . , pd are distinct, and that for any k ≤ r+1, any k of the d points
do not lie on a linear subspace of dimension k−2.

Let us first estimate the number of configurations in Pr(Fq)
(d) that are in the general

position. In order to show the result more clearly, we define two sequences of natural numbers
{αd} and {βd} recursively as follows. For d ≤ r + 1, αd = βd = (qr+1−1)...(qr+1−qd−1)

(q−1)d . For

d > r + 1, αd := αd−1.max{qr+1−1
q−1 −

(d−1
r

)qr−1
q−1 ,0} and βd := βd−1.(

qr+1−1
q−1 −

(d−1
r

)qr−1
q−1 +((d−1

r )
2

)qr−1−1
q−1 ).

Proposition 6. Let r ≥ 2 and d ≥ 1 be natural numbers. Let γd be the number of configura-
tions S ∈ Pr(Fq)

(d) that are in the general position. Then we have

αd

d!
≤ γd ≤ βd

d!
.

Proof
We can consider the points in Pr(Fq) as vectors in Fr+1. We first need to count the

numner of ordered d-uple of vectors {v1, . . . ,vd} that are in the general position. When
d ≤ r+1, for the first vector can be chosen freely, i.e. (qr+1 −1) choices, and for the second
vector, to keep the principal of generality, there are (qr+1 − q) choices. Similarly, there
are (qr+1 −qd−1) choices for d-th chosen vector. Since in projective vector space, there are
(q−1) non-zero constants, we have to divide (q−1)d . Therefore, for d ≤ r+1, αd

d! = γd =
βd
d! .

When d > r + 1, for any subset I = {i1, . . . , ir} ⊂ {1, . . . ,d} of cardinal r, we define HI as
the hyperplane generated by {vi1, . . .vir}. Suppose that the bound of γd−1 is known, let us
estimate γd . Let {v1, . . . ,vd−1} be a configuration in the general position that are chosen
and fixed. We consider the choices of vd . The assumption that v1, . . . ,vd−1,vd are in the

12
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general position forces that vd ∈ Pr(Fq)
(d)−

⋃
HI . Hence, we need to estimate the number of

elements in Pr(Fq)
(d)−

⋃
HI . By the inclusion-exclusion principle,

∑
I
|HI|− ∑

I ̸=J
|HI ∩HJ| ≤ |

⋃
I

HI| ≤ ∑
I
|HI|.

Since vi are in general position, for different I,J, HI ̸= HJ , which implies that the dimension
of HI ∩HJ is r − 2. The number of elements in each HI ∩HJ is qr−1−1

q−1 and the number of

elements in each HI is qr−1
q−1 . Hence, we have(

d −1
r

)
qr −1
q−1

−
((d−1

r

)
2

)
qr−1 −1

q−1
≤ |

⋃
I

HI| ≤
(

d −1
r

)
qr −1
q−1

.

Therefore, the number of choices of vd is greater than or equal to qr+1−1
q−1 −

(d−1
r

)qr−1
q−1 and less

than or equal to qr+1−1
q−1 −

(d−1
r

)qr−1
q−1 +

((d−1
r )
2

)qr−1−1
q−1 . Our desired result follows. □

Since it is easy to follow the sequence α and β , we will just show few of them in the
chart for convenience. Readers can compare the estimates we make and the accurate result
(Theorem 5) calculated in [3], [4], [7], [8]. In following case, we suppose αd ̸= 0.

d lower bound(αd
d! ) upper bound(βd

d! )
1 q2 +q+1 q2 +q+1
2 1

2(q
2 +q+1)(q2 +q) 1

2(q
2 +q+1)(q2 +q)

3 1
6(q

2 +q+1)(q2 +q)q2 1
6(q

2 +q+1)(q2 +q)q2

4 1
24(q

2 +q+1)(q2 +q)q2(q2 −3q−3) 1
24(q

2 +q+1)(q2 +q)q2(q2 −3q+3)

As can be already seen from the proof, the estimate in Proposition 6 is quite coarse. The
main difficulty that prevents us to give better estimations is the increasing complexity of
the configurations of hyperplanes in Pr(Fq) when the number of the hyperplanes increases.
However, explicit expression of the number of configurations in Pr(Fq)

(d) that are in the
general position is conceivable when r and d are relatively small. This is indeed the case.
Here we collect the results in [3], [4], [7], [8] that calculate the number of configurations in
the general position in P2(Fq)

(d) for d < 10. To state the theorem, let us first introduce some
notation.

a(q) =
{

1 if q is a power of 2
0 otherwise ,

b(q) = |{x ∈ Fq|x2 + x+1 = 0}|

=


0 if p ≡−1 mod 3 and n odd
1 if p = 3
2 otherwise

,

c(q) =
{

1 if q is a power of 3
0 otherwise ,

13
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d(q) = |{x ∈ Fq|x2 + x−1 = 0}|

=


0 if p ≡±2 mod 5 and s is odd
1 p=5
2 otherwise

,

e(q) = |{x ∈ Fq|x2 +1 = 0}|

=


0 if p ≡−1 mod 4 and s is odd
1 p=2
2 otherwise

.

The counting results go as follows.

Theorem 5 ([3, 4, 7, 8]). Let γd be the number of points S ∈ P2(Fq)
(d) which are in the gen-

eral position. Then
(1) γ1 = q2 +q+1.
(2) γ2 =

1
2(q

2 +q+1)(q2 +q).
(3) γ3 =

1
6(q

2 +q+1)(q2 +q)q2

(4) γ4 =
1
4!(q

2 +q+1)(q2 +q)q2(q−1)2

(5) γ5 =
1
5!(q

2 +q+1)(q2 +q)q2(q−1)2(q2 −5q+6)
(6) γ6 =

1
6!(q

2 +q+1)(q2 +q)q2(q−1)2(q2 −5q+6)(q2 −9q+21)
(7) γ7 =

1
7!(q

2+q+1)(q2+q)q2(q−1)2((q−3)(q−5)(q4−20q3+148q2−468q+498)−
30a(q))
(8) γ8 =

1
8!(q

2 +q+1)(q2 +q)q2(q−1)2((q−5)(q7 −43q6 +788q5 −7937q4 +47097q3 −
162834q2 +299280q−222960)−240(q2 −20q+78)a(q)+840b(q))
(9) γ9 = 1

9!(q
2 + q + 1)(q2 + q)q2(q − 1)2(q10 − 75q9 + 2530q8 − 50466q7 + 657739q6 −

5835825q5+35563770q4−146288034q3+386490120q2−588513120q+389442480−1080(q4−
47q3+807q2−5921q+15134)a(q)+840(9q2−243q+1684)b(q)+30240(−9c(q)+9d(q)+
2e(q))).

4.2 Estimates of the number of elements in Rr,d
k,β (Fq)

In order to estimate the number of elements in Rr,d
k,β (Fq), we should find the condition to use

our method to take the estimate.
Let k be a field, let V be vector space of dimension r+ 1. Let S = {v1,v2, . . . ,vd} be a

subset of V . Let k be a positive integer. Define a map:

ψS : SymkV ∗ → kd

f 7→ ( f (v1), f (v2), . . . , f (vd)),

where f ∈ SymkV ∗ is viewed as a degree k homogeneous polynomial on V and f (vi) is the
value of the polynomial f at vi ∈V .

14
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Theorem 6. Assume that S is in the general position. Then rank ψS ≥ min{d,kr+1}

Proof First assume that d ≤ kr+1. We need to show that ψs is surjective in this case.

Lemma 4. There exists f1 ∈ SymkV ∗ such that f1(v1)= 1 and f1(vi)= 0 for any i= 2,3, . . . ,d.

Proof of Lemma 4. Since the number of elements of {v2,v3, . . . ,vd} is less than or equal to
kr by our assumption on d, we can form k groups of r vectors G1, . . . ,Gk ⊂ {v2, . . . ,vd} satis-
fying: every vector of {v2, . . . ,vd} lies in at least one of G1, . . . ,Gk. Then the the assumption
that S is in the general position says that any r+1 vectors in {v1, . . . ,vd} are linearly indepen-
dent, which implies that v1 is not in the span of Gi for any i = 1,2, . . . ,k. Therefore, for any i,
there exists a linear map Li :V → k such that Li(v1)= 1 and Li|Gi = 0. Take f1 = L1L2 . . .Lk ∈
SymkV ∗. Then f1(v1) = L1(v1)L2(v1) . . .Lk(v1) = 1 and f1(vi) = L1(vi)L2(vi) . . .Lk(vi) = 0
for i = 2,3 . . . ,d.

Similarly, for any i = 1,2, . . . ,d, there exists fi ∈ SymkV ∗ satisfying fi(vi) = 1, fi(v j) = 0
for j ̸= i. Now we can show that ψS : SymkV ∗ → kd is surjective. Let (y1, . . . ,yd) ∈ kd be an
arbitrary element. We define f := y1 f1 + y2 f2 + · · ·+ yd fd . Then we have

f (vi) = y1 f1(vi)+ · · ·+ yd fd(vi) = yi for any i = 1, . . . ,d.

Hence, we have proved the surjectivity of ψS when d ≤ kr+ 1. For d > kr+ 1, we need to
show that rankψS ≥ kr+1 , in this case, take S′ = {v1, . . . ,vkr+1} ⊂ S and

ψS : SymkV ∗ → kd

f 7→ ( f (v1), f (v2), . . . , f (vd)).

ψS′ : SymkV ∗ → kkr+1

f 7→ ( f (v1), f (v2), . . . , f (vkr+1)).

Therefore, we have rankψS ≥ rankψS′ = kr+1, where the last equality follows from the
first case of the proof. □

Corollary 2. Let S = (p1, . . . , pd)∈ Pr(k)d be a configuration that are in the general position
(i.e. any r+1 of them are not in a hyperplane). The number of linearly independent hypersur-
faces of degree k passing through S is less than or equal to max{

(k+r
r

)
−d ,

(k+r
r

)
− kr−1},

which means that i(k,S)≤ max{
(k+r

r

)
−d ,

(k+r
r

)
− kr−1}.

Proof. Let kk[x0, . . .xr] be the set of degree k homogeneous polynomials in x0, . . .xr with
coefficients in the field k. The dimension of kk[x0, . . .xr] is

(k+r
r

)
. Let Y = V ( f ) be the

hypersurface defined by a degree k polynomial f . We can consider the the points p1, . . . , pd
as vectors v1, . . . ,vd discussed in Theorem 6. Obviously, p1, . . . , pd ∈ Y , if and only if the
corresponding vi, satisfies that f (vi) = 0 for each i. Then define:

ψ{v1,...,vd} : kk[x0, . . .xr] → kd

f 7→ ( f (v1), f (v2), . . . , f (vd)).
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Then Y = V ( f ) passes through p1, . . . , pd , if and only if f ∈ kerψ{v1,...,vd}. Therefore, the
number of linearly independent hypersurfaces of degree k is equal to dim kerψ{v1,...,vd} =

dim kk[x0, . . .xd]− dim Im ψ{v1,...,vd} =
(k+r

r

)
− rank ψ{v1,...,vd} , which is less or equal to

max{
(k+r

r

)
−d ,

(k+r
r

)
− kr−1}.

Now we can prove readily Theorem 2 stated in the Introduction.

Proof of Theorem 2. It is a direct consequence of Proposition 6 and Corollary 2.

When r = 2, we have the following better estimations.

Proposition 7. Assume β ≥ max{ (k+2)(k+1)
2 −d +1 , (k+2)(k+1)

2 −2k}.
(1) |R2,4

k,β (Fq)| ≤
(q(q+1)+4

4

)
− 1

4!(q
2 +q+1)(q2 +q)q2(q−1)2

(2) |R2,5
k,β (Fq)| ≤

(q(q+1)+5
5

)
− 1

5!(q
2 +q+1)(q2 +q)q2(q−1)2(q2 −5q+6)

(3) |R2,6
k,β (Fq)| ≤

(q(q+1)+6
6

)
− 1

6!(q
2 +q+1)(q2 +q)q2(q−1)2(q2 −5q+6)(q2 −9q+21)

(4) |R2,7
k,β (Fq)| ≤

(q(q+1)+7
7

)
− 1

7!(q
2 + q+ 1)(q2 + q)q2(q− 1)2((q− 3)(q− 5)(q4 − 20q3 +

148q2 −468q+498)−30a(q))
(5) |R2,8

k,β (Fq)| ≤
(q(q+1)+8

8

)
− 1

8!(q
2 +q+1)(q2 +q)q2(q−1)2((q−5)(q7 −43q6 +788q5 −

7937q4 +47097q3 −162834q2 +299280q−222960)−240(q2 −20q+78)a(q)+840b(q))
(6) |R2,9

k,β (Fq)| ≤
(q(q+1)+9

9

)
− 1

9!(q
2+q+1)(q2+q)q2(q−1)2(q10−75q9+2530q8−50466q7+

657739q6−5835825q5+35563770q4−146288034q3+386490120q2−588513120q+389442480−
1080(q4−47q3+807q2−5921q+15134)a(q)+840(9q2−243q+1684)b(q)+30240(−9c(q)+
9d(q)+2e(q))).

The functions a(q), b(q), c(q), d(q) and e(q) are defined before Theorem 5.

Proof It follows directly from Theorem 5 and Corollary 2. □

4.3 Explicit values

In fact, when d is relatively small, we can calculate the explicit value of |Rr,d
k,β (Fq)|. In this

section, we calculate the value of |Rr,d
k,β (Fq)| when d = 1,2,3. We will still use the following

map:
ψ{v1,...,vd} : kk[x0, . . .xr] → kd

f 7→ ( f (v1), f (v2), . . . , f (vd)).

d = 1

It is easy to know that for any S, i(k,S) =
(k+r

r

)
−1. Therefore

|Rr,1
k,β (Fq)|=

{
0 if β >

(k+r
r

)
−1

qr+1−1
q−1 if β ≤

(k+r
r

)
−1

.
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d = 2

We can divide the problem into two possibilities–that the two points in the configuration are
the same point, and that the two points in the configuration are distinct. First, we will talk
about the condition that the two points are the same points, which means that configuration
S = {p, p}, which is the same condition as when d = 1. Thus, we have i(k,S) =

(k+r
r

)
−1.

Then, we consider the condition that the two points are distinct, which means that S = {p, q}
with p ̸= q. In this case, it is easy to find that rank ψ{v1,...,vd} is 2, which means that i(k,S) =(k+r

r

)
−2. Therefore, if β ≥

(k+r
r

)
, there is no points in Rr,2

k,β (Fq). If β =
(k+r

r

)
−1, Rr,2

k,β (Fq)

contains the configurations of the form {p, p} with p ∈ Pr(Fq) and there are qr+1−1
q−1 choices.

If β ≤
(k+r

r

)
− 2, the set Rr,2

k,β (Fq) contains any possible configurations of two points. We

have to choose 2 unordered points (not necessarily distinct) among qr+1−1
q−1 = |Pr(Fq)|. There

are
( qr+1−q

q−1 +2
2

)
of them. In conclusion,

|Rr,2
k,β (Fq)|=


0 if β ≥

(k+r
r

)
qr+1−1

q−1 if β =
(k+r

r

)
−1( qr+1−q

q−1 +2
2

)
if β ≤

(k+r
r

)
−2

.

d = 3

We will divide the situations into three parts–that the three points are the same, that two points
are the same and one is different, and that the three points are distinct.

1. There are qr+1−1
q−1 configurations representing three same points. In this case, as in the

case of d = 1, i(k,S) =
(k+r

r

)
−1.

2. The case where two points are the same and one is different is the same with the case

of d = 2. In this case, there are 2 ·
( qr+1−1

q−1
2

)
configurations whose i(k,S) =

(k+r
r

)
−2.

3. Now we consider the case when the three points are distinct. In this case, we have the
following lemma.

Lemma 5. If k ≥ 2, then the map

ψ{v1,v2,v3} : kk[x0, . . .xr] → k3

f 7→ ( f (v1), f (v2), f (v3))

is surjective. In particular, i(k,S) =
(k+r

r

)
−3.

Proof When k ≥ 2, for each vi ∈ S, we have a hyperplane Li, satisfying that Li(vi)= 0,
but Li(v j) ̸= 0, for each i ̸= j. Take fi =Πi ̸= jL j, which is a degree 2 homogeneous poly-
nomial. Then, ψ{v1,v2,v3}( f1) = (a1,0,0), ψ{v1,v2,v3}( f2) = (0,a2,0), ψ{v1,v2,v3}( f3) =
(0,0,a3), where a1,a2,a3 ̸= 0. It means that rankψ{v1,v2,v3} = 3. □
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Hence, it remains to consider the case k = 1 and that the three points are disctinct. We
need to divide this question into two subcases.

(a) If the three points lie on a same straight line ℓ, then by Bézout’s theorem, any
hyperplane containing the three points must contain ℓ. The number of linearly
independent hyperplanes containing ℓ is r−1. To determine the number of con-
figurations in this case, it is easy to know the choice of two distinct points in Pr(k)

is
( qr+1−1

q−1
2

)
, and choice of another distinct point lying on the line determined by

the two chosen points is q+1−2 = q−1, which means that the number of con-

figuration in this condition is
( qr+1−1

q−1
2

)
(q−1).

(b) If the three points are not on one line, we denote P the plane containing these
points. Let H be a hyperplane containing these three points, we claim that H
contains P. In fact, if P is not contained in H, then P∩H is a line. But these three
points, which are in the intersection of P and H, are not on one line. Hence, any
hyperplane containing these three points must contain P. Therefore, we need to
calculate the number of linearly independent hyperplanes which contain P, which

is i(k,S) = r−2. The number of configurations in Pr(k) is
( qr+1−1

q−1
3

)
−
( qr+1−1

q−1
2

)
(q−

1).

By the discussion above, when β ≥
(k+1

r

)
, there is no points in Rr,3

k,β (Fq). When β =
(k+r

r

)
−

1, there are only one situation where i(k,S) ≥ β , namely, the Case 1. There are qr+1−1
q−1

configurations in this case. When β =
(k+r

r

)
− 2, there are several cases where i(k,S) ≥ β ,

namely, the Case 1, Case 2 and the Case 3a. Hence, |Rr,3
k,β (Fq)| is qr+1−1

q−1 +2 ·
( qr+1−1

q−1
2

)
when

k ≥ 2 and is qr+1−1
q−1 +2 ·

( qr+1−1
q−1
2

)
+
( qr+1−1

q−1
2

)
(q−1) when k = 1. Finally, for any configuration,

we have i(k,S) ≥
(k+r

r

)
− 3, by our discussion above. Hence, when β ≤

(k+r
r

)
− 3, we have

|Rr,3
k,β (Fq)|=

( qr+1−1
q−1 +2

3

)
. In conclusion,

|Rr,3
k,β (Fq)|=



0 if β ≥
(k+r

r

)
qr+1−1

q−1 if β =
(k+r

r

)
−1

2 ·
( qr+1−1

q−1
2

)
+ qr+1−q

q−1 if β =
(k+r

r

)
−2 and k ≥ 2

2 ·
( qr+1−1

q−1
2

)
+ qr+1−q

q−1 +
( qr+1−1

q−1
2

)
(q−1) if β =

(k+r
r

)
−2 and k = 1( qr+1−1

q−1 +2
3

)
if β ≤

(k+r
r

)
−3

.
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