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Abstract—The combination of computer technology and music
can promote the development of multi-source and diversity of
the music style, which can effectively promote the exchange of
music culture and the enrichment of the music market. In this
paper, we present a deep cycle generative adversarial networks
(DNN-CycleGAN) model to complete the transformation of the
music style between the bamboo flute and flute. We use a short-
term Fourier transform algorithm (STFT) to realize the time-
frequency conversion of the waveform music, and then utilizing
a deep convolutional neural network structure (DNN) to extract
the features of the waveform music in the Chinese bamboo flute.
Then we structure the CycleGAN model to transfer the bamboo
flute music into flute music. We collect a sufficient amount of
music data sets to train our model. The experimental results show
that the converted music has a precise rhythm, and the timbre
characteristics of the flute and bamboo flute are demonstrated.

Index Terms—music style, STFT, CycleGAN, bamboo flute,
flute

I. INTRODUCTION

Music can not only express people’s emotions but also pro-
mote communication between people. The variety of musical
works is helpful to promote the spread of musical culture
and the development of the musical market [1], [2]. With
the rapid development of modern computer technology and
Internet techniques, digital synthetic music has become the
trend of traditional music development. The emergence of
various forms of digital music works has become the main
industry in the music market by virtue of its individuality and
diversity [3], [4]. Meanwhile, with deep learning technology
(DLT), the musical style transition is possible.

The music style is the various musical elements in the
category of music, such as tune, rhythm, timbre, intensity,
harmony, texture, and form, but it mainly refers to the tune.
Musical style transition is to retain the content characteristics
of one piece of music from one instrument and to convert
it into a piece of new music with the style characteristics of
another piece of music from another instrument [5]. The wave-
form music produced by the performer using the instrument
is nonlinear in tone, timbre, and volume, which increases the
difficulty of modeling. Especially, because the waveform mu-
sic data usually has a high time sampling rate, and modeling
directly on the raw sampled data sets is challenging.

At present, in the waveform of music produced from the
instrument, there are two kinds of methods employed to

transform the musical styles: one is based on the sound signal
processing ways and the other is image processing ways. The
sound signal processing ways use mainly the original music
sampling waveform to train the model and to realize the
transformation of the musical styles in different instruments.
The main models include the simple neural network model and
series-based neural network model. In [6], the author proposes
a WaveNet model to train the audio waveform sampled data,
and to realize the conversion between the text data and musical
data with high fidelity. In [7], the author presents a multi-
domain wavelet network based on auto-encoder to realize the
variety of musical styles in an unsupervised way. In [8], the
author designs a self-supervised learning strategy to achieve
the transfer of timbre.

The image processing ways consist of two main stages: the
feature extraction of the original musical wave data and the
construction of the transformation model. The common meth-
ods have Convolutional neural networks (CNN), long short-
term memory networks (LSTM), and generative adversative
networks (GAN). [9] proposes an encoder-decoder model with
LSTM construction to realize the musical style transition,
and uses the STFT algorithm to reconstruct the musical data.
[10] presents a CNN model based on the continuous wavelet
transform (CWT) to generate a new audio style from style
audio. [11] proposes a GRU-GAN model to generate the
chords music, and the use of the GRU method can realize
the autonomously learning chords, finally, the experimental
results show that the model has a good style presentation. [12]
uses the constant Q transform (CQT) to extract the feature of
musical timbre and utilizes the CycleGAN model to achieve
the musical timbre transition from the orchestral instruments.

From the existing literature, the overall number of studies on
the musical style transition is still relatively small, especially,
the most representative of Chines Bamboo flute and flute.

Bamboo flute and flute are both well-known beautiful
melodic instruments, but there are significant differences in
structure and timbre between these two instruments. Capturing
the complete feature of the music style data and improving the
generalization ability of the model is the biggest challenge. To
address these problems, we first propose a CycleGAN model
for the style transition of the traditional Chinese Bamboo
flute music, the overall design idea is shown in Figure 1
(the detailed model design is presented in Section 4). In
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this model, we utilize STFT algorithm to realize the time-
frequency transformation of the music waveform, and the
spectrum image of the music waveform is better for extracting
the features by the CNN model; in the musical waveform
features conversion stage, we use the CycleGAN model to
convert the music played by bamboo flutes into flute music,
which better combines the timbre characteristics of bamboo
flute and flute.

Musical waveform of 

Chinese bamboo flute

Musical waveform 

of  flute

STFT

Spectrum image of 

musical waveform 

DNN Model
CycleGAN 

Model

Feature extraction Style translation

Chinese bamboo 

flute
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Fig. 1. The overall design idea of our proposed method.

The main contribution of this paper is as follows:
• It uses STFT algorithm to realize the time-frequency

transformation of music waveform.
• It proposes a CNN model to extract the features of music

waveform.
• It presents a CycleGAN method to convert the music

played by bamboo flutes into flute music, and it is
understood that this model is first proposed for the style
transition of bamboo flute and flute.

II. RELATED WORKS

For the music style transition of bamboo flute and flute, the
two most important things are the completeness of the feature
extraction of the original music style and the construction of
the transformation model. In this section, we mainly introduce
our related works for our study.

A. Feature Extraction of Musical Style

There is a high time sampling rate in the waveform music
data from the musical instruments (1600 samples per second),
and it is time-dependent with the periodic, which is difficult to
directly model in the time-domain musical waveform. In some
literature, utilizing the abstract features representation of the
waveform to indirectly modeling. [13] uses Mel spectrogram
to map the features and to use a WaveNet model for the
musical waveform synthesis. In [14], the Mel spectrogram
is employed to realize the data preprocessing, and then to
train the model. However, by Mel Scale, Spectrogram is dot
multiplied with several Mel filters, which will add to the
computational burden. STFT algorithm is another way to
realize the feature extraction of musical data. In [15], the
STFT algorithm is used to separate Logarithmic amplitude
and instantaneous frequency from the frequency domain, and

as the input of the GANs model, finally, to achieve efficient
audio synthesis. In [16], the same method is employed for the
rhythm recognition of Chinese musical instruments. However,
the frequency-domain image can not represent the temporal
coherence of musical style. We propose a CNN structure,
which first uses the STFT algorithm to obtain the frequency-
domain image of the musical waveform and use the CNN
structure to extract the features of musical style in the bamboo
flute.

B. Generative Adversarial Networks

GAN is a deep learning model that learns unsupervised on
complex distributions. The Model has two modules: the Gener-
ative module (G) and the Discriminative module (D), and GAN
obtains a good output by the mutual game learning of these
two modules. The basic structure of GAN is shown in Figure
2. The generator generates fake data samples (images, audio,
etc.) and tries to fool the discriminator. The discriminator tries
to distinguish between the real and the fake samples. Both
generators and discriminators are the neural networks, and the
modules G and D compete to analyze, capture, and replicate
the changes in the sampled data set. Repeat these steps, and
in the process, the generator and discriminator get better at
what they do with each repetition. In [17], GAN is used to
realize the time features learning of music and to improve the
stability of the synthetic multi-instrument music. In [18], GAN
is employed to generate a dual track music generation model
and a deep chord gated recurrent neuro generative adversarial
neural for the music generation. In [19], GAN is used for
music genre transfer and utilizing the single generator network
to learn the many-to-many mappings of the different attribute
domains. Though the GAN model has shown advantages in
the field of music creation, there are some problems: the
slow convergence and the poor model stability; G optimization
needs enough gradient information; the training is difficult to
converge.

Random noise vector

Generative 

module

 G
Discriminative 

module

 D

Generative 

samples

Real samples

Real

Fake

Fig. 2. The basic structure of GAN.

C. Learning of Musical Style Transfer

The research of musical style transfer in Chinese musical
instruments acquires inspiration from image recognition. There
are two methods: direct modeling by the musical waveform
and indirect modeling by the abstract feature of the musical
waveform. Direct modeling is technically challenging, so
abstract feature learning and AI models are widely used in
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the transformation model between the different styles of instru-
ments. [20] presents an automatic music generation method,
and it uses LSTM and GRU to improve the quality of the
musical composition. [21] uses an enhanced LSTM model to
capture the dynamics of the music rhythm. [22] proposes a
music unsupervised style transfer method, and MFCC is used
for recognizing the different characteristics of the musical
styles. The GAN model has remarkable learning ability in
unsupervised learning. [23] designs an LSTM-based GAN
model to realize the transition melodies from lyrics, and the
generator and discriminator use the deep LSTM structure,
which improves the performance of the transition model.
[24] presents a network units-based GAN method to achieve
the melody music creation with emotional factors, and two
discriminators are used for enhancing the GAN model. In [25],
to improve the fidelity of music authors use a CycleGAN
model for music genre transition. From our research, the
learning of musical style transfer is currently relatively few,
especially in the different types of instruments. In our paper,
we first propose to use the CycleGAN model for the musical
style transfer of traditional Chinese bamboo flute music.

III. DATASET

In this section, we mainly describe the musical sampled data
set in detail and introduce the method of the data processing
and storage respectively.

A. Data Acquisition

We gathered music that is played with flutes and music that
is played with bamboo flutes using NetEase Cloud Music,
which is the platform where music can be downloaded. We
decide to use midi to represent audio data because it is
relatively easy to be turned into arrays to be used as input
for models.

B. Data Processing

After that, we used matrices to represent the data. We have
to first sample the data with a sampling rate of sixteen-time
steps per bar where a bar is a time segment that has a certain
number of beats. This is because the music we obtained has
different time signatures but it requires uniform time steps per
bar to allow matrix representation.

For simplicity, we adjusted the velocity of all the music to
the same value, assuring every note has the same loudness.
This allows us to represent the notes easier by taking only
on and off states of notes instead of specific values. We also
merged all the tracks in the midi format into a single track
that contains most of the original identity. To make training
more simplistic, we normalized the pitch values and ignored
the notes with pitches above C8 and below C1 since these
pitches are rare. As a result, we have pitch values ranging
between 0 and 1 with 84 possible values, and we got a matrix
with size (16, 84) for every bar where 16 is the time steps and
84 is the pitch range.

Each training sample contains four bars and therefore forms
a matrix of size (64, 84). To create these training samples, we

first concatenated all the music data, which gave us a large
matrix. Then we split this large matrix into smaller matrices
of the target size and labeled them. After that, we divided the
samples of each dataset into a training set and a testing set,
with a ratio of approximately 4 to 1. In addition, we created
a mixed dataset that contains all the samples from the two
datasets for an alternate mode of training.

IV. OUR MODEL

In this section, we mainly introduce the overall construction
design of our proposed model, namely DNN-CycleGAN in
detail. The function of DNN-CycleGAN is to complete the
style features transfer of the bamboo flute to flute, which can
generate a unique musical style with bamboo flute and flute.
Our model framework includes: learning the representation of
musical waveform style and style transfer model GAN-based
DNN-CycleGAN.

A. Overall Framework Design of DNN-CycleGAN

The overall framework design of DNN-CycleGAN is pre-
sented in Figure 3. From Figure 3, there are four parts:
data collection and storage, data pre-processing, the extraction
of musical waveform style features, and the design of the
CycleGAN model.
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Fig. 3. The overall framework design of DNN-CycleGAN.

B. Representation Learning of Musical Waveform Style

In this paper, we design a DNN structure to complete the
extraction of musical style features from Chinese bamboo
flutes and flutes. This process is described as follows: firstly,
the collected music waveform is converted into the spectrum
image by utilizing the STFT algorithm; secondly, the spec-
trum image is the input data in the DNN model. As far as
we know, the idea of STFT is that the long non-stationary
stochastic process is regarded as the superposition of a series
of short-time stochastic stationary signals, and the short-time
characteristics can be achieved by adding a window function
on time. In mathematics, STFT is described as follows:
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GZ(t, f) =

∫ ∞

−∞
[z(u)g∗(u− t)]ej2πf(u)du, (1)

where z(u) indicates the signal source and g∗(u− t) indicates
the time window function. Through STFT, the time-domain
waveform of a music signal is transferred to a frequency-
domain image, which will be the input data of the DNN model.

After that, we design a DNN model for extracting the mu-
sical waveform features, which takes its inspiration from the
VGG-16 structure. The specific parameters of the model are as
follows: the number of convolution layers, pooling layers, and
fully-connected layers are 13, 5, and 3, respectively. Softmax is
used as the activation function, and the size of the convolution
kernel is 3× 3. The detailed structural design is in Figure 4.

Convolution+ReLU

Max pooling

Fully-connected +ReLU

224×224×64

112×112×128

56×56×256

28×28×512

14×14×512
7×7×512

1×1×4096

1×1×1000

Fig. 4. The structural design of DNN.

Convolution layers In the DNN model, the function of
the convolutional layer is to represent the features of musical
style, and the key component is the convolution kernel. By the
processing operation of the convolution kernel, the output of
each convolution layer is as the new features mapping. It can
be defined as the follows:

F (j)ni = f(
∑

s∈Ni(n−1)

∑
(ku,kv)∈k(n)

ws
js(ku,kv)x

(n−1)
s

(c+ ku, r + kv) +Wb
(n)
i ),

(2)

K(n) = {(ku, kv) ∈ M2|0 < ku < Kw, 0 < kv < Kh}, (3)

where, the length and width of the convolution kernel are
denoted by Kw and Kw, respectively. The size of the current
network layer is n, and the offset of ith features mapping in
the convolution network layer is Wb

(n)
i . s ∈ Ni(n−1) is the

features mapping set in n− 1 layer.
Max-pooling layer After the convolution operations, the

max-pooling layer is used to reduce the dimension of the
feature data by imitating the human vision system, which can
effectively reduce network parameters and prevent overfitting.
The max-pooling process is described as follows:

F (j)ni = MAX(F (j)
(n−1)
i ). (4)

Fully connected layer The fully connected layers are after
the Convolution layers and the Max-pooling layers. The fully

connected layers can integrate the local information with the
category distinction in the convolution layer and pooling layer,
then improve the DNN network performance. ReLU is used
as the activation function, this process is described as follows:

oni = f(

M∑
j=1

w
(n)
ij b

(n)
i ). (5)

C. The Framework Design of CycleGAN

In this paper, we use CycleGAN to complete the style
transfer in Chinese bamboo flute music and flute music, which
can solve the problem of the music style transfer of the
unmatched data. The aim of CycleGAN is to learn the data
conversion functions F (x) and G(y) between two different
types of domains X and Y . F (x) is used to the sampled data
x ∈ X convert into the elements of Y , F (x) : x → y. G(x)
is used to the sampled data y ∈ Y convert into the elements
of X , G(x) : y → x. CycleGAN is a ring structure and is
mainly composed of two generators G and two discriminators
D. The details of the model structure are presented in Figure
5.
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Encoder Dencoder
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Encoder Dencoder

Generator B

Encoder Dencoder

Generator B

Encoder Dencoder

Generator B
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flute

Chinese bamboo 

flute

Fig. 5. The details structure of CycleGAN.

Generator: the generator consists of an encoder, a con-
verter, and a decoder. Encoding: the first step, the convo-
lutional neural network is used to extract features from the
input image. The image is compressed into 256 64*64 feature
vectors. Converter: the feature vectors of the image in the DA
domain are converted to the feature vectors in the DB domain
by combining the non-similar features of the image. We use six
layers of the Reset module, each of which is a neural network
layer composed of two convolutional layers, which can achieve
the goal of preserving the original image features during
transformation. Decoding: Using the deconvolution layer to
restore the low-level features from the feature vectors, and
finally get the generated image. The structure of the generator
is shown in Figure 6.

Discriminator: the discriminator takes an image as input
and tries to predict whether it is the original image or the
output image of the generator. The discriminator itself belongs
to a convolutional network, which needs to extract features
from images and then determine whether the extracted features
belong to a specific category by adding a convolutional layer
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… 

Fig. 6. The structure of generator.

that produces one-dimensional output. The structure of the
discriminator is shown in Figure 7.

Chinese bamboo 

flute

Multi-layers convolution

Recognition Result

 Convolution 

layers

Discriminator 

input

Fig. 7. The structure of discriminator.

Loss: In this paper, we use the DNN-CycleGAN model to
achieve music style transfer. The core is the cooperation of two
GAN networks. The generator is responsible for generating
a spurious sample, Gx→y , and the discriminator attempts to
distinguish the difference between the generated sample Gx→y

and the actual sample x. In the process of music style transfer,
to promote the preservation of effective audio information,
CycleGAN supplements the loss of identity mapping. The
specific expressions are as follows:

Adversarial Loss: to make the transfer music features in-
distinguishable from the original target, the adversarial losses
are used as follows:

Lossadv = (GX→Y , DY ) = Ey∼PY (y)[logDY (y)]

+Ex ∼ PX(x)[log(1−DY (GX→Y (x)))],
(6)

where the discriminator DY seeks the true music style
feature by maximizing the adversarial loss and making the
best decision boundary between the features and transforma-
tion features. By minimizing adversarial losses, the generator
GX→Y generates the features to cheat DY .

Cycle-consistency Loss: to regularize the mapping, Cycle-
consistency loss is used. It uses the forward and inverse
correlation of dual mapping to improve the consistency loss
of the model. The cycle-consistency loss helps the generators
GX→Y and GY→X find the best pairing for the (X,Y )
combination in the form of a transformation of the X → Y
cycle.

Losscyc(GX→Y , GY→X) =

Ex∼PX
(x)[||GY→X(GX→Y (x))− x||1]

+Ey ∼ PY (y)[||GX → Y (GY → X(y))− y||1],
(7)

Identitymapping Loss: to further preserve the input, use
identity mapping loss:

Lossid(GX→Y , GY→X) = Ex∼PX
(x)[||GY→X(x)− x||1]

+Ey ∼ PY (y)[||GX → Y − y||1],
(8)

Therefore, the total loss can be written as a linear combi-
nation of the above three losses:

Lossfull = Lossadv(GX→Y , DY )

+Lossadv(GY→X , DX)

+λcycLcyc(GX→Y , GY→X)

+λidLid(GX→Y , GY→X),

(9)

where, Lfullindicates the final loss; λcyc and λid is a hyper-
parameter, and to control the significance of the related loss.

V. EXPERIMENTS

In this section, we focus on the presentation and discussion
of experimental results, the model training and test process,
and performance evaluation results.

A. Model Training

During the training process, we used the Adam optimizer
with an initial learning rate of 0.0002 and momentum decay
rates of 0.5 and 0.999. The batch size in all training processes
is set to 16. The coefficient used to weigh the cycle consistency
loss, which is often expressed as lambda, equals 10 in our
model. The coefficient used to weight the extra discriminator
loss, which is often expressed as gamma, is 1. We did five
pieces of training in various settings. The first model is trained
with a model that has two generators and two discriminators
described in section 3. We trained this model with 8 epochs.
The second model is trained with an identical structure as
the first but with 10 epochs. The third model is trained with
the extra discriminators and the rest of the architecture of
the model is the same as the first two models. This model
is trained with 10 epochs. The fourth model is trained with
the extra discriminators but used Softmax as the activation
function in discriminators. This model is trained with 10
epochs. The fifth model is trained with extra discriminators
and LeakyRelu activation function for discriminators, but with
only two convolutional layers instead of three. This model is
trained with 10 epochs.
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B. Results and Discussion

We choose a classic Chinese bamboo flute music,
JasmineF lower as the experimental data to verify our
method. The time-domain waveform of Chinese bamboo flute
music is shown in Figure 8. After that, the time-domain wave-
form of the music style is inputted into the DNN-CycleGAN
for the musical style transfer. The transformed music style
waveform is shown in Figure 9.
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Fig. 8. Chinese bamboo flute music waveform.
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Fig. 9. The transformed music style waveform.

Overall, the loss of the generator is substantially higher
than the loss of the discriminator. However, we tried various
ways to improve the situation and some of them worked well
since the difference in the two losses is reduced effectively.
We plotted the loss of generators and discriminators while
training, the results are shown in Figures 10, 11, 12, 13,
and 14. The first model (no extra discriminators, 8 epochs),
second model (no extra discriminators, 10 epochs), third
model (extra discriminators, 10 epochs), fourth model (extra
discriminators, Softmax activation, 10 epochs), and fifth model
(extra discriminators, 2-layer discriminator, 10 epochs).

From the first two results, we see that increasing the number
of epochs did not decrease the loss of the discriminators or
the loss of generators and it did not solve the problem where
the generator and the discriminator are unbalanced.
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Fig. 10. First model (no extra discriminators, 8 epochs).
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Fig. 11. Second model (no extra discriminators, 10 epochs).

Comparing this model with the second, we see that the
difference in the losses is reduced and the generator loss de-
creased by a large amount. Then we used the third model (extra
discriminators, 3-layer discriminator, Leaky Relu activation,
10 epochs) to test performance on the testing set and generated
samples. We found that most of the styles of the flute are
successfully transferred to the bamboo flute and vice versa.

Comparing this model with the third, we see that the
generator loss is higher, so we conclude that Softmax activa-
tion is less suitable than LeakyRelu activation in this model.
Comparing this model with the third one, we see that the
difference in the losses has decreased but the generator loss
has not, so reducing the layers of the discriminator did not
work well in this situation.

The
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Fig. 12. Third model (extra discriminators, 10 epochs)
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Fig. 13. Fourth model (extra discriminators, Softmax activation, 10 epochs).
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Fig. 14. Fifth model (extra discriminators, 2-layer discriminator, 10 epochs).

C. Model Subjective Evaluation

To better verify the performance of our model, we adopts
the subjective evaluation to evaluate the performance of the
model. We employ MOS as the subjective evaluation criterion.
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Fig. 15. The percentage of subjective evaluation.

The specific scoring rule is set as follows: making subjective
judgments about the original music and the music generated
by the model in different people. The score x ∈ [1, 2, 3, 4, 5],
the higher the score, the better the effect. The experimental
test results are shown in Figure 15. From Figure 8, the scores
between 4 and 5 account for 48% of the total score, and the
scores between 3 and 4 account for 38% of the total score,
which illustrates our model has good performance.

VI. CONCLUSION

In this paper, we propose a machine learning method DNN-
CycleGAN to transfer music from the genre that consists of
the bamboo flute to the genre that consists of the flute. The
model includes a music style feature learning module based
on DNN and a CycleGAN for the transferring of music style.
A considerable amount of experiments have approved that
transferring music from a Chinese genre to a western genre
can be done successfully. In the future, we can transfer music
from other domains and genres or add velocities into account
instead of turning the velocities of all notes the same as we
did this time.
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