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The Effects of Industrial Robot Adoption on Air

Environment: Evidence from Provincial

Manufacturing in China

Abstract

Industrial robots are the key enabling technology of industry 4.0 and the artificial

intelligence revolution, which is significant to sustainable development. The existing

research mainly focuses on the economic effect of industrial robot adoption, but the

research on environmental effects is still insufficient. Based on an environmental

Kuznets curve model, this paper empirically examines industrial robot applications'

air pollution abatement effects using data on industrial robot applications in China's

inter-provincial manufacturing industry from 2006 - 2015. The study presents three

key findings. First, the application of industrial robots significantly contributed to

reducing air pollution levels. The application of industrial robots brought about

productivity improvements, factor structure optimization, and technological

innovations in production, improving energy efficiency and reducing air pollution

levels. Second, there is a two-dimensional heterogeneity of industrial exhaust

emission reduction effects of industrial robot applications by industry and region.

Applying industrial robots in labor-intensive and technology-intensive industries is

more effective in reducing industrial emissions than in capital-intensive

manufacturing industries. Third, the emission reduction effect of industrial robot

application in the eastern region is better than that in the central and western regions.

This paper finds that there are moderating and mediating mechanisms for the effects

of industrial robot applications on industrial exhaust emission reduction. On the one

hand, high absorptive capacity brings a better innovation environment, which

enhances the effect of industrial waste gas emission reduction; on the other hand, the

application of industrial robots promotes industrial waste gas emission reduction by
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positively influencing the increase of energy intensity. Finally, policy

recommendations are made based on the results.

Key Words: Industrial Robot Adoption, Air Pollution, Heterogeneity Characteristics,

Influence Mechanism
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1

1. Introduction

Like climate change, air pollution has become one of the biggest risks to the

ecosystem, human health and sustainable development. The air quality database

released by the World Health Organization (WHO) (2022) showed that the air quality

in most cities has been deteriorating, and more than 99% of the world's people are

exposed to fine particulate matter with harmful level. WHO estimated that about 7

million people die prematurely every year due to the impact of environmental and

household air pollution. Since the reform and opening up, the rapid development of

industrialization has promoted China's economic development, but at the expense of

over exploitation of resources and severe air pollution, resulting in environmental

deterioration. Slowing down the deterioration of air quality and reducing industrial

exhaust emissions are also one of the issues that the Chinese government urgently

needs to solve.

Scholars have focused on the factors affecting the air environment, such as

economy, policy, population, external impact and technology. Economic factors

contain a wide range of variables, such as economic growth, financial development,

foreign direct investment (FDI) and trade, energy and infrastructure investment. Nasir

et al. (2019) found an important long-term relationship between financial and

economic development and environmental degradation. In FDI and trade. There are

two competing arguments: both the pollution halo and the pollution haven theories.

The first is that FDI harms the environment because the host nation wants to draw

FDI by lowering environmental standards. The second is that FDI and trade lead to

the development of cutting-edge technology and effective management techniques

that lower carbon emissions. Different research findings have been found by experts

along these two lines of reasoning. Others found that FDI either produces positive

environmental externalities (Tang and Tan, 2015; Paramati et al., 2017; Zhu et al.,

2016); or has a nonlinear relationship to pollution emissions (Hanif et al., 2019;

Shahbaz et al., 2018; Zhang and Zhou, 2016). Others found that FDI either produces

positive environmental externalities (Tang and Tan, 2015; Paramati et al.,2017; Zhu et
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2

al.,2016); or has a nonlinear relationship to pollution emissions (Hanif et al., 2019;

Shahbaz et al., 2018; Zhang and Zhou, 2016). Although the use of solid fuels has

decreased and the energy mix has changed from non-renewable to renewable (Chien

et al., 2021; Meng et al., 2019), increasing overall energy consumption increases

emissions in a manner comparable to increasing energy intensity (Sadorsky, 2014).

Huang et al. (2020) demonstrated the connection between infrastructure spending and

elevated air pollution. Rasool's(2019) findings also suggested that transportation

infrastructure plays a significant influence.

Environmental taxes and regulations are the key policy factors. Chien et al.

(2021), for instance, discovered that environmental taxes aid in the reduction of

carbon emissions. According to Neves et al. (2020) and Wu et al. (2021),

environmental management can also help to reduce air pollution over time.

Urbanization and population density are thought to be the two key demographic

factors influencing air pollution (Sadorsky, 2014). The first study on the impact of

demographic factors on sulfur dioxide content was proposed by Cole and Neumayer

in 2004. While the effects of urbanization and average home area were relatively

insignificant, they discovered a U-shaped link between population density and

pollution. Recent studies have focused on how external shocks, such as the global

financial crisis, affect energy intensity and exhaust emissions. Recent studies have

focused on how external shocks, including the financial crisis and the COVID-19

outbreak, affect energy intensity and exhaust emissions (Wang et al., 2021,2022b,

2022c).

Researchers have concentrated on the effect of technology advancements on air

pollution since the groundbreaking studies by Ehrlich and Holdren (1971) and Simon

(1973), but the argument has never ended. The Environmental Kuznets Curve (EKC)

hypothesis, first put forth by Grossman and Krueger in 1991, establishes a theoretical

framework connecting environmental impact to technology and contends that

technology offers a means of reducing pollution brought on by population expansion.

According to Shi and Lai's (2013) research, technological advancements can help

reduce environmental pollution. The actual data supporting this influence is
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3

complicated, though. Some academics contend that technological expertise is crucial

to lowering air pollution (Afonso et al., 2021). Others claim that despite technical

advancements, large-scale climate change brought on by greenhouse gas emissions

cannot be prevented (Shao et al., 2021). Two key factors account for the contradictory

findings: a vague interpretation of the impact mechanism and a disregard for the

context that governs the interaction between technological advancement and air

pollution.

Artificial intelligence has significantly altered human productivity and daily life

in recent years, making it one of the most promising technologies now being explored

and used (Acemoglu and Restrepo, 2018). Artificial intelligence has not only directly

increased production but also sparked supplementary innovation, much like what

happened after the inventions of the steam engine, electric power, internal combustion

engine, and the computer. As a result, it qualifies as a broad technology and has a

wide range of potential applications. As a result, the world's leading economies are

actively creating artificial intelligence. China is no different. China released the

New-generation Artificial Intelligence Development Plan in 2017, with the goal of

dominating the global artificial intelligence innovation landscape by 2030.

Additionally, China sees AI as a new tool for advancing the green economy.

Industrial robots used extensively in manufacturing may be the most

economically viable application of artificial intelligence (Cockburn et al., 2018). An

industrial robot is a multipurpose automatic control operating machine used for

industrial automation and reprogramming, according to the International Federation of

Robotics (IFR). A McKinsey Global Institute (MGI) analytical report from 2017

estimates that by 2030, 400 million workers worldwide, or 15% of the total workforce,

may be displaced by technology. This demonstrated how industrial robots, the

industry 4.0 "symbol of artificial intelligence" (Dantas et al., 2020; Elpidio et al.,

2020), have increasingly permeated the manufacturing process. This will have

substantial commercial value as well as societal repercussions (Acemoglu and

Restrepo, 2019, 2021; Acemoglu and Autor, 2011). More research is being done on

the impact of robot adoption on economic growth (Aghion et al., 2019), energy
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4

consumption (An et al., 2020; Wang et al., 2022a), productivity (Kromann et al., 2020;

Ballestar et al., 2020), innovation (Liu et al., 2020), social influence on equality

(Acemoglu and Restrepo, 2018, 2020), and other factors in addition to (Lei, 2021).

Due to worries that machines could outcompete people, a lot of current research

focuses on how industrial robots will affect the labor market (Acemoglu and Restrepo,

2021; Acemoglu and Autor, 2011). Some academics believe that the use of industrial

robots is a sign of impending unemployment. Robots with lower pay are gradually

replacing workers, especially low-skilled workers (Graetz and Michaels, 2018;

Acemoglu and Restrepo, 2020). Due to three distinct functioning mechanisms—

productivity effects, substitution effects, and reinstatement effects—Acemoglu and

Restrepo (2019) reach various conclusions. When more affordable machinery takes

the place of more expensive labor, output rises, manufacturing costs decrease, and

productivity increases. The need for labor rises as a result of productivity. More duties

that the labor force once performed are moved to industrial robots, which results in

the replacement effect. It lowers wage growth and labor demand while decreasing

employment availability. The workforce's comparative advantage in completing more

difficult and creative activities is the cause of the reinstatement effect. Numerous

highly skilled employees leave their regular jobs to produce new product content or

take on new labor-intensive duties as a result of automation standardizing the

manufacturing process. Various labor market effects are caused by how these three

factors are balanced. A growing body of literature addresses the impact of robot

adoption on economic growth (Aghion et al., 2019), energy consumption (An et al.,

2020; Wang et al., 2022a), productivity (Kromann et al., 2020; Ballestar et al., 2020),

innovation (Liu et al., 2020), and the social impact on equity in addition to the debate

over robot use and employment, wage and income share (Lei, 2021).

In contrast, there is insufficient research on how industrial robots affect the

environment. From a theoretical and qualitative standpoint, very few academics have

examined how industrial robot technology might affect pollution reduction (Javaid et

al., 2021; Liu and De Giovanni, 2019). However, there is currently a dearth of

quantitative analysis to empirically investigate how industrial robot adoption may
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5

alter the characteristics of heterogeneity, the air environment, and potential

mechanisms. Three research issues are thus posed in light of the existing studies:(1)

Can air pollution be efficiently reduced by using industrial robots? (2) Do the effects

of industrial robot applications on the air environment vary depending on the sectors

and geographical locations? (3) What are the potential means through which industrial

robots might be used to encourage the reduction of industrial emissions? The answers

to these issues have significant and beneficial ramifications for society as a whole as

well as for policymakers, academics, and business professionals.

This report uses data on industrial robot usage in manufacturing in 30 Chinese

provinces and regions between 2006 and 2015 to undertake a thorough empirical

examination of these challenges based on the EKC model. The following three

aspects are connected to this paper's contributions. First, this article investigates the

connection between industrial robot applications and air pollution, in contrast to the

previous literature, which concentrates on the economic impacts of industrial robot

applications. The impact of industrial robot applications on the reduction of industrial

exhaust gas emissions is being empirically examined for the first time in this subject

in our study. This not only closes a gap in the research on how industrial robot

applications affect the air environment but also offers a fresh viewpoint on how to

advance initiatives for a green economy and sustainable growth. Second, in relation to

the research framework, we think that a high capacity for absorption makes industrial

robots more likely to flow over and be absorbed. We also investigate how this can

enhance the effects of industrial robotics applications on industrial exhaust gas

reduction. In this study, we examine the mechanisms by which industrial robot

applications affect the air environment using energy intensity as a mediating variable.

Finally, in terms of research design, we combine data from various databases to create

a regional-industry-level dataset for China that allows us to empirically test the

heterogeneity of industrial exhaust emission reduction effects and take into account

the heterogeneity of industrial robot applications across different provinces and

regions. This broadens the scope of the entire research field.
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6

The remainder of the essay is structured as follows. The research hypotheses are

presented in Chapter 2 after a study of the pertinent literature. The methodology and

data for the study are described in full in Chapter 3. Results of the empirical tests are

presented and discussed in Chapter 4. Chapter 5 concludes with recommendations for

associated policies.

2. Theoretical Basis and Assumptions
2.1 Industrial Robot Application and Air Environment

Industrial robots are a key enabler for Industry 4.0, and their use offers numerous

economic advantages such as increased manufacturing flexibility, operational cost

reductions, labor productivity, and total factor productivity gains (Graetz and

Michaels, 2018; Dalenogare et al., 2018). Industrial robots have unintentionally

improved the environment by reducing waste, increasing energy efficiency, and

attaining cleaner output, despite the fact that their use does not always prioritize

environmental sustainability (Javaid et al., 2021; Liu and De Giovanni, 2019).

Manufacturers can lower material losses in manufacturing and supply chain

operations thanks to industrial robot automation's dependability and the digital

production operations monitoring platform created around it (Javaid et al., 2021;

Martinelli et al., 2021). Additionally, the employment of industrial robots powered by

cognitive evaluation algorithms and optical identification technology enables the

transformation of organic or solid waste into high-quality secondary raw materials,

advancing the circular economy and sustainability objectives (Wilts et al., 2021). The

widespread use of industrial robots in manufacturing operations has also encouraged

the reallocation of production resources and elements and optimized the production

process, resulting in a decrease in industrial emissions throughout the production

chain (Wang et al, 2022a). Industrial robot utilization also boosts labor productivity,

grows production while using the same amount of inputs, lowers resource and energy

consumption, and minimizes air pollution (Graetz and Michaels, 2018). Industrial

robot use, in particular, encourages technological innovation in businesses through

knowledge generation, spillover, learning capacity enhancement, R&D, and talent

investment (Liu et al., 2020). Studies have also demonstrated that industrial robots
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7

streamline green process innovation, while green innovation further lowers industrial

waste gas emissions (Liu and De Giovanni, 2019). (Du et al., 2019; Yang et al., 2020).

Consequently, based on the findings of the discussion above, we suggest the

following hypothesis.

Hypothesis 1. The application of industrial robots can reduce the emission of

industrial waste gas, slow down the degree of air pollution, and improve air quality.
2.2 Heterogeneity in the Application of Industrial Robots to Reduce Air
Pollution

Diverse fields and regions have different industrial robot applications, each with

its own characteristics. This raises the question of whether industrial robot

applications for reducing industrial exhaust gas are heterogeneously effective. It has

been noted that the environmental impacts of AI technologies are industry

heterogeneous, with labor-intensive and technology-intensive industries having

greater environmental impacts compared to capital-intensive industries (Liu et al.,

2022). IFR data indicate that in the manufacturing sector, about 64.8% of industrial

robots in China were used in the automotive and electronic and electrical equipment

manufacturing industries in 2015, while less than 1% of industrial robots were used in

the three manufacturing industries of apparel and textiles, wood products and

furniture, and paper and printing (Figure 1). The different application intensities may

lead to different characteristics of the impact of industrial robots on industrial

emissions in each manufacturing industry.
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8

Figure 1. Industrial robot application in China’s Manufacturing in 2006,2010 and 2015.

Notes: The vertical axis is a logarithmic scale with base 10.

The 30 provinces studied are further divided into three main geographic

sub-regions in this paper: the eastern region, the central area, and the western region1,

according to Han Zhaoan et al. (2021). In 2015, the eastern region accounted for

around 62.7% of all industrial robot uses worldwide, whereas the central and western

regions only accounted for 24.2% and 13.1%, respectively (Figure 2). On the one

hand, the levels of technology and R&D in various countries vary significantly, which

affects the spread and uptake rates of industrial robotics. As a result, the reduction in

air pollution caused by technical advancement and structural improvement may vary.

On the other side, variations in industrial robot applications may result from regional

variations in industrial structure, which will exacerbate the impact of reducing

industrial exhaust emission levels. Consequently, the following theory is put forth.
1 The eastern region includes 11 provinces: Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian,
Shandong, Guangdong and Hainan; the central region includes 8 provinces: Shanxi, Henan, Hubei, Hunan, Jilin,
Heilongjiang, Anhui and Jiangxi; 11 provinces: Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai,
Ningxia, Xinjiang, Guangxi and Inner Mongolia.
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9

Hypothesis 2. Applications of industrial robots have different effects on reducing

air pollution in different locations and in factor-intensive manufacturing industries.

Figure 2. Industrial robot application in three regions of China from 2006 to 2015.

2.3 Application of Industrial Robots and How It Impacts the Air Environment
Regional absorptive capacity may have an impact on how industrial robot

applications affect the decrease of industrial exhaust emissions. The ability of a

corporation or region to recognize, assimilate, and apply external knowledge utilizing

pertinent knowledge already accessible and transform it into commercial value is

referred to as absorptive capacity (Hashai and Almor, 2018). In the literature,

absorption capacity is frequently determined by R&D activity (De Jong and Freel,

2010; Mahmoudian et al., 2021). High absorptive regions are better able to locate and

use outside knowledge sources (Bertrand and Mol, 2013). Due of the complexity of

industrial robotics as a technology, some application organizations or geographical

areas may find it difficult to absorb and integrate the new technology. The ability to

quickly react to changes in the innovation environment and technology allows

businesses to better absorb and use industrial robotics while boosting their

competitive advantage. As a result, the interaction between absorptive capacity and
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10

industrial robot applications may serve as a catalyst for the decline in air pollution

levels, enhancing the impact of industrial robot applications on the reduction of

industrial exhaust emissions. Particularly, the greater the favorable influence of

industrial robot applications on air pollution level decrease when regional absorptive

capacity is large. Contrarily, regions with limited absorptive capacity have trouble

absorbing and applying industrial robotics knowledge and technology, which could

impede the impact of industrial robotics applications on reducing air pollution levels.

As a result, we speculate the following.

Hypothesis 3. The association between air pollution reduction and industrial

robotics applications is positively moderated by absorbtive capacity.

This study also attempts to investigate whether energy intensity is a mediating

mechanism for the impact of air pollution levels caused by industrial robot

applications. According to the European Environment Agency (2004) "Air pollution,

climate change, water pollution, thermal pollution, and solid waste disposal are some

of the environmental issues directly linked to the production and consumption of

energy. The primary cause of urban air pollution is the production of air pollutants

from the combustion of fossil fuels ". Numerous studies have also demonstrated that

air pollution is primarily caused by energy consumption and that there is a positive

link between energy intensity and air pollution levels, i.e., a reduction in energy

intensity results in a reduction in air pollution intensity (Afonso et al., 2021; Rahman

and Kashem, 2017). Additionally, it has been noted that the use of industrial robots

helps to lower the energy intensity of manufacturing. On the one hand, using

industrial robots in businesses can encourage technical innovation to increase energy

efficiency and decrease energy intensity, effectively reducing the level of air pollution

(Liu et al., 2020; Wang et al., 2022a). Contrarily, industrial robots boost productivity

and replace unskilled labor, lowering energy use and industrial emissions per unit of

output ( Graetz and Michaels, 2018; Wang et al., 2022a). Due to the technical

innovation effect and productivity enhancement effect, the use of industrial robots

thereby increases energy efficiency and decreases energy intensity, thereby lowering
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the amount of air pollution. This study makes the following claim in light of the

debate above.

Hypothesis 4. By adversely influencing energy intensity, the use of industrial

robots helps to lower the amount of air pollution.

Figure 3 depicts the study's theoretical framework.

Figure 3. Theoretical model.

3. Data and methods

3.1 Data

In order to analyze the effect of industrial robot adoption on air environment, we

combined various data sources to construct a province-industry level data set.

(1) International Federation of Robotics (IFR) data. The IFR data are based on

the annual survey of global robot manufacturers, aggregating national-industry-year

level data from 2006-2015, and are currently the most authoritative statistics on

industrial robots at the macro level. In this paper, the raw data are processed as

follows: 1. The 2006-2015 Chinese industry-level data are selected, and the IFR data

are matched with the National Industry Code 2011 standard (GB/T 4754-2011)

according to the study of Yan Xueling et al. (2020) to obtain industrial robot

installation data for 13 manufacturing industries2. For consistency, this paper does not

2 13 manufacturing industries are [1] food and beverage processing manufacturing; [2] textile and apparel products;
[3] wood products and furniture manufacturing; [4] paper and printing products; [5] chemical products; [6] rubber;
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12

calculate the railroad, ship, aerospace, and other transportation equipment

manufacturing employment3. 2. Following the approach of Lu and Zhu (2021), the

percentage of employment in each province of these 13 manufacturing industries to

the total employment in the country was collected from inside the Chinese Labor

Statistics Yearbook, and then this percentage was multiplied by the number of

industrial robots installed in that manufacturing industry to obtain industrial robots for

13 manufacturing industries in 30 provinces of China Installation data4.

(2) China Industrial Environment Database. This database (2022) includes 31

regions and four pollutants: chemical oxygen demand (COD), sulfur dioxide (SO2),

ammonia nitrogen (NH3-N), and nitrogen oxides (NOX). The database is based on

micro-enterprise emission data from the China Environmental Statistics Database,

connecting industrial exhaust gas emission data at the regional level and industry level

from the China Environmental Statistics Yearbook, using top-down and bottom-up

methods to constitute the regional-industry level data, and finally using cross-entropy

to balance the two-dimensional data. In this paper, the region-industry-level data of

this database for the period 2006-2015 are used as proxy variables for air pollution.

(3) China Industrial Statistical Yearbook. This statistical yearbook is a helpful

yearly publication that accurately depicts the growth of China's industrial economy. It

systematically includes national industrial economic statistics of all economic types,

industrial industries and provinces, autonomous regions, and municipalities directly

under the central government, as well as the historical data of key indicators from

2006 to 2015. This database is used in this paper to collect indicators related to value

added, employment, owner's equity, foreign capital, and R&D investment of

industries in each region.

and plastic products; [7] non-metallic mineral products; [8] metal processing and smelting; [9] metal products; [10]
general and special equipment manufacturing; [11] automotive manufacturing; [12] electronic and electrical
equipment manufacturing; [13] other branches of manufacturing.
3 Because the manufacturing segment code came in 2002 and 2011 in 2006-2015, rail, shipping, aerospace and
other transportation equipment manufacturing did not have in 2002, meaning that relevant data was missing for
2006-2011.
4 Due to the availability of data, Tibet, Hong Kong, Macao and Taiwan were not included in the scope of the
study.
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13

(4) China Statistical Yearbook. The National Bureau of Statistics compiles and

publishes this statistical yearbook, an educational annual publication that fully

portrays China's economic and social progress. This statistics yearbook was used to

gather information for this article on GDP, urban population, and the sum of all

commodities imported and exported from each region between 2006 and 2015.

(5) China Energy Statistical Yearbook. This statistical yearbook is implemented

by the Department of Energy Statistics of the National Bureau of Statistics to collect,

organize and provide statistical data of the survey. This statistical yearbook is used in

this paper to collect the energy consumption indicators of each industry in each region

from 2006 to 2015.

3.2 Variables
3.2.1 Dependent and Independent Variables

To study the influences of industrial robot applications on air pollution, we use

the total emissions of four industrial exhaust gases, chemical oxygen demand (COD),

sulfur dioxide (SO2), ammonia nitrogen (NH3-N), and nitrogen oxides (NOX), as

proxy variables for the dependent variable air pollution; The number of industrial

robots installed is aggregated yearly to obtain the operational stock of those robots,

which is used as a proxy variable for industrial robot applications. To attenuate the

effect of heteroskedasticity in the data, both variables are treated logarithmically.
3.2.2 Covariates

Gross Domestic Product per capita (ln pgdp). The EKC model emphasizes the

nonlinear relationship between income and environmental pollution. To verify the

EKC hypothesis, the paper uses GDP per capita by region to express the income

levels.

Average employment (ln employ). Labor demand reflects the efficiency of

energy utilization and industrial structure, which influences the level of air pollution

indirectly. In general, large industrial enterprises which are energy-intensive and have

more employees have relatively higher industrial emissions, particularly for heavy

industries. While high-tech industries with low labor demand have relatively low air
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pollution levels. Therefore, we use the logarithm of the average employment in each

manufacturing industry in each region as one of the factors.

Foreign Direct Investment ( ln FDI ). Through investment and technology

diffusion to the host country, FDI may bring more environmentally friendly

production standards and technologies. Therefore, it will have a positive impact on

environmental protection in the host country. However, foreign firms take advantage

of the relatively more lenient environmental regulation in developing countries to

transfer intensively polluting industries to the host country, which may increase

pollution emissions there. We use foreign capital in owner's equity to measure FDI

and take logarithm of it.

Urbanization rate (urban). The urbanization makes cities the main gathering

place for energy expenditure and air pollution. During the urbanization process,

manufacturing develops, causing industrial emissions increasing. However, a proper

process of urbanization can also improve environment, remarkably increase the

energy using rate, and ultimately reduce air pollution. Therefore, urbanization may

have different effects on air pollution at different stages. In this study, the ratio of

urban population to total population in each region is used as a representative of

urbanization rate.

Industrial structure (indus). The degree of air pollution is influenced by changes

in the industrial structure. Unquestionably, the growth of energy-efficient,

environmentally friendly, and high-tech enterprises will further aid in the reduction of

industrial exhaust emissions. The industrial structure is expressed in the following

paper using the secondary industry's contribution to GDP as a percentage.

Trade openness (trade). Trade liberalization lowers resistance and enables

additional production growth, which encourages industrial emissions. Additionally,

through trade connections, sophisticated technology can be passed from

technologically advanced economies to relatively less advanced economies, allowing

countries that import technology to minimize industrial emissions by increasing

energy use efficiency. In this study, trade openness is expressed as the total of goods

exported and imported per unit of GDP.
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3.2.3 Moderator
Absorptive capacity (ac). The term "absorptive capacity" describes a region's or

an enterprise's capacity to recognize, use, and absorb external knowledge while

utilizing locally existing information in order to create commercial value. According

to Lu et al. (2021), this study measures absorptive capacity using the ratio of nominal

R&D expenditure to nominal GDP, also known as regional R&D intensity.
3.2.4 Mediator

Energy intensity (ln ei). In this paper, energy intensity is defined as the amount

of energy used per RMB 10,000 of industrial value added (constant purchasing power

parity (PPP) in 2011) for each manufacturing sector in each region, where a low rate

indicates high energy efficiency. Again, the energy intensity is treated

logarithmically.

Table 1 provides statistical descriptions of all variables. The Variance Inflation

Factor (VIF) and correlation coefficients for the variables are displayed in Table 2.

From this we found that the VIF values much less than 10 and determined that there

was no significant covariance between the variables.

Table 1. The variable statistical description.

Variable Definition Unit Obs. Mean Std. dev. Min Max

lnWG
Industrial waste

gas emissions
Thousand tons 3900 2.469 1.968 -5.368 8.039

ln robot
Industrial robot

application
Units 3399 2.563 2.900 -4.605 9.787

ln pgdp Per capita GDP CNY/person 3900 4.323 0.532 2.8848 5.3452

ln employ
Average

employment
10,000 people 3900 6.273 0.650 4.158 7.409

ln FDI
Foreign capital in

owner's equity

100 million

CNY
3900 6.744 1.102 3.342 8.694

urban Urbanization rate % 3900 49.48 17.60 27.50 87.48

indus Industrial structure % 3900 28.83 6.872 17.24 48.53

trade Trade openness % 3900 84.85 62.25 15.64 427.3

ac
Absorptive

capacity
% 3819 1.575 0.977 0.476 4.553

ln ei Energy intensity

tons of standard

coal/ thousands

CNY

38975 4.746 0.392 3.773 6.002
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Table 2. VIF test and correlation analysis.

VIF lnWG
ln

robot

ln

pgdp

ln

emplo

y

ln

FDI
urban indus trade ac ln ei

lnWG 1

ln robot 1.81 -0.34 1

ln pgdp 1.64 -0.75 0.44 1

ln employ 1.27 0.42 -0.20 -0.56 1

ln FDI 1.31 -0.37 0.48 0.87 1.102 1

urban 1.01 -0.55 0.35 0.83 17.60 27.50 1

indus 1.78 0.62 -0.06 -0.63 0.31 -0.43 -0.52 1

trade 1.78 -0.11 0.26 0.10 -0.52 0.15 0.18 0.10 1

ac 1.80 -0.62 0.53 0.74 -0.28 0.68 0.62 -0.40 0.01 1

ln ei 1.46 0.75 -0.16 -0.41 0.28 0.05 -0.23 0.44 -0.15 -0.13 1

3.3 Measurement Model Setting

Most researchers utilize the extended Environmental Kuznets Curve (EKC)

model to investigate the factors that affect carbon emissions (Lin and Zhou, 2019).

The association between income level and environmental pollution was identified via

the conventional EKC model. They were discovered to have an inverse U-shaped

connection. The researchers then expanded the traditional EKC model by researching

how commerce, urbanization, climate change, and other variables affect

environmental contamination (Zhang et al., 2017; Wu et al., 2021). This study

examines how industrial robot adoption affects the air environment and suggests a

new model that builds on the traditional EKC model by include industrial robot

adoption and other control factors. The newly proposed model is as follows:

ln ����� = �0 + �1 ln �������� + �2 ln ������� + �3 ln �������
2 + �4 ����������

+ �� + �� + �� + ���� （1）
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WGijt denotes the total industrial emissions in year t of manufacturing industry j

in province i. robotijt represents the industrial robots operating stock.controlijt is

GDP per capita.controlijt represents other control variables, i.e. average employment

(ln employ), foreign direct investment ( ln FDI ), urbanization rate (urban) industrial

structure (indus), trade openness (trade). Variables γi、γj、γt express denote province,

industry, and year fixed effects respectively. εijt is the random perturbation term.

β is the coefficient of each variable. Variable �represents province and � represents

industry, � represents year, and ln denotes the logarithmic form that eliminates

heteroskedasticity.

To verify Hypothesis 3, this study employs a moderating effect analysis to

determine whether regional absorptive capacity influences the pathway by which

industrial robot application affects air pollution. The model includes interaction terms

for both absorptive capacity and absorptive capacity with industrial robot application.

If the interaction term's coefficient is significant, it is demonstrated that the absorptive

ability has an exceptional moderating influence. The precise model configuration is as

follows:

ln ����� = �0 + �1 ln �������� + �2 ln ������� + �3 ln �������
2 + �4 ����������

+ ����� + � ln �������� × ���� + �� + �� + �� + ���� （2）

acit is the moderator, i.e., absorptive capacity.φ represents the coefficient of

the moderator.ω expresses the interaction coefficient. If ω is less than 0 and the p

value is less than 0.1, it means that the relationship between the use of industrial

robots and the decrease of industrial exhaust gases is favorably regulated by the

absorptive capacity.

In addition, to test whether energy intensity is a mediating mechanism for

industrial robot applications to promote industrial exhaust emission reduction, the

following model is constructed in this paper.
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ln ����� = �0 + �1 ln �������� + �2 ln ������� + �3 ln �������
2 + �4 ���������� + ��

+ �� + �� + ���� （3）

ln ����� = �0 + �1
' ln �������� + � ln ����� + �2 ln ������� + �3 ln �������

2

+ �4 ���������� + �� + �� + �� + ���� （4）

eiijt is the mediator, which is energy intensity. If the estimates of β1 and λ

are both significant, it indicates the existence of a mediating effect. At this point, it is

necessary to further analyze whether β1 is significant, and if β1 is also obvious

then it indicates the existence of partial mediation effect, otherwise it is a full

mediation effect.

4. Results and Discussions

4.1 Baseline Regression

The optimum statistical approach is determined in this study by applying the

F-test, Lagrange Multiplier (LM) test, and Hausman test. The outcomes provide

strong evidence that using a fixed effect model as the foundation for our empirical

research is the best choice.

Table 3 displays the baseline regression estimates with the corresponding control

variables added, as displayed in Columns (1)- (4). Column 5 demonstrates by

stepwise regression that the effect of industrial robot adoption on industrial exhaust

pollution is negative at a 1% significance level, supporting the research hypothesis.

According to the findings, the use of industrial robots has greatly decreased industrial

exhaust emissions. Widespread use of industrial robots has encouraged waste

reduction, increased energy efficiency, and clean production, all of which have a

favorable impact on the environment's air quality.

Table 3. The baseline regression results.

Variables （1） （2） （3） （4） （5）

ln robot
-0.544***

（-13.26）

-0.006

（-0.87）

-0.011***

（-3.28）

-0.010***

（-3.31）

-0.008***

（-2.69）
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ln pgdp
3.23***

（13.59）

0.239***

（3.01）

0.412***

（4.13）

0.379***

（2.94）

(ln pgdps)2
-0.312***

（-22.15）

-0.091***

（-12.39）

-0.093***

（-11.63）

-0.087***

（-10.29）

ln employ
0.197***

（3.19）

0.207***

（3.41）

0.176***

（2.81）

ln FDI
-0.487***

（-4.49）

-0.685***

（-7.34）

-0.677***

（-7.15）

urban
-0.039***

（-2.98）

-0.036***

（-2.75）

indus
0.002***

（2.90）

0.003***

（3.17）

trade
-0.001***

（-3.98）

constant
-0.685***

（-39.18）

-9.278***

（-15.28）

-5.918***

（-12.49）

-6.294***

（-12.31）

-5.872***

（-11.23）

Observation 3319 3319 3236 3236 3236

Adjusted R-square 0.2084 0.6903 0.9190 0.9135 0.9185

Notes：Robust t-statistics are shown in parentheses. *, ** and *** denotes the significance at the 10%, 5% and 1%

level, respectively. Region fixed effects, industry fixed effect and year fixed effects are con- trolled in all columns.

Additionally, the findings of the control variable regression show that, first, the

GDP per capita coefficient is positive and the GDP per capita square term coefficient

is negative. The variables' respective significance levels of 5% and 1% show that

income and air pollution have an inverse U-shaped relationship. It is in line with the

EKC theory. Second, the average number of employees and the industrial structure

are both significantly positive, indicating that an increase in the average number of

employees and the share of the secondary industry will have a detrimental impact on

environmental performance and raise the level of industrial exhaust emissions. There

is a clear promotion influence on industrial exhaust pollution as a result of the

secondary industry's quick development and high energy intensity, like the

manufacturing industry. Third, urbanization is negative at a 1% level of significance,

which shows that thanks to developments in green urbanization, the ecological

benefits of innovation have received greater attention in the process of urbanization,

which has led to a decrease in air pollution. Finally, at a 1% level of significance, the

regression coefficient of foreign direct investment and trade opening is negative. It
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shows that there is a technological spillover effect in the process of foreign direct

investment and trade ties, which has brought more eco-friendly production standards

and technology, increased the energy efficiency of relevant regions and sectors, and

decreased industrial exhaust emission.

4.2 Robustness Check

In order to further verify the reliability of the model, robustness check is carried

out in this paper. We start by swapping out the independent variable. In order to

replace the installed stock of industrial robots measured by employment share, we use

the installed stock of industrial robots measured by value-added share. The installed

stock of industrial robots in the industry is multiplied by the value-added share that

each industry in each region contributes to the country as a whole. This value-added

share is used to measure the installed stock of industrial robots in the industry.The

regression results are displayed in Table 4's Column 1. Each coefficient's sign and

significance are in line with the findings of the initial regression. This demonstrates

the model's robustness. The number of articles on industrial robots in various Chinese

industries (including machine learning, deep learning, and computer vision, among

others) is then used to gauge the acceptance level of industrial robots for robustness

testing, according to Liu et al. (2020). The volume of articles may, in part, indicate the

technological sophistication of the sector. The China National Knowledge Internet

provides the information for related papers on industrial robots. And then they are

divided into regions according to the unit of the first author or the corresponding

author, thus the related paper data of regional industry level are obtained. The second

column of Table 4 shows that the estimated effect of papers related to the industrial

robots is the same as the baseline result. They are negatively related to air pollution.

The outliers are also disregarded in the way that follows. All explanatory

variables in this study were tested at significance levels of 1% and 99%. For

regression findings, please refer to Column 3 of Table 4. We discovered that the

deployment of industrial robots continues to have a significant negative impact on
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industrial exhaust pollution, and other variables' significance and coefficient sign are

unaffected. As a result, the model is thought to be reliable.

Table 4. Robustness checks of the baseline regression

Variable
（1） （2） （3）

lnWG lnWG Winsorisd

ln robot
-0.006***

（-2.57）

-0.021***

（-5.42）

ln paper
-0.059***

（-3.19）

Control Variables YES YES YES

Observation 3236 3718 3324

Adjusted R-square 0.9127 0.9029 0.9192

Notes：Robust t-statistics are shown in parentheses. *, ** and *** denotes the significance at the 10%, 5% and

1% level, respectively. Region fixed effects, industry fixed effect and year fixed effects are con- trolled in all

columns.

4.3 Endogenous Problem

Since there is bi-directional causality between the dependent and the independent

variable, deviation may exist on the regression results of the fixed effect model. Based

on this, the lagged item of industrial robot adoption is used as instrumental variable

(IV) to alleviate the potential endogenous problem.

We use 2SLS (two stage least square) to estimate the parameters. The regression

results are given in Table 5. The following findings can be attained based on the first

stage empirical results of the 2SLS approach in Column (1) of Table 5:

First, the null hypothesis of unidentified IV is rejected since the Anderson Canon.

corr. LM statistic is 72.48, which is substantially higher than the threshold value of

1% significance level. Second, the Cragg-Donald Wald F statistic's p value is

considerably lower than 1%, rejecting the weak IV null hypothesis. Third, the null

hypothesis that the sum of endogenous regression coefficients equals 0 is rejected at

the 1% level based on the Anderson-Rubin Wald test, further confirming the

association between IV and the use of industrial robots.
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According to the coefficient of IV, which is 0.6764 and significant at the 1%

level, there is a strong linear association between IV and the adoption of industrial

robots, and the adoption of industrial robots during the lag period has a positive

impact on the base period. Column (2) of Table 6 lists the empirical results from the

2SLS method's second stage. The industrial robots' coefficient is -0.0591, which is

significant at the 1% level and in line with the initial finding. The robustness of the

finding is confirmed once more.

Table 5. Regression results of the 2SLS model

Variable （1） （2）

L ln robot
0.676***

（11.43）

ln robot
-0.059***

（3.76）

ln pgdp
-0.275**

（-2.05）

0.379***

（2.94）

(ln pgdps)2
0.012*

（1.78）

-0.016***

（-3.75）

ln employ
0.068***

（3.85）

-0.087***

（-3.21）

ln FDI
0.714***

（5.39）

-0.697***

（-6.15）

urban
0.027***

（3.18）

-0.031***

（-2.73）

indus
-0.004***

（-2.98）

0.002***

（2.45）

trade
0.002

（1.58）

-0.003**

（-1.98）

constant
-18.0069***

（-39.18）

-18.0069***

（-39.18）

Anderson canon. corr. LM statistic 72.48***

Cragg-Donald Wald F statistic 130.51***

Anderson-Rubin Wald test 12.15***

Observation 2916

Adjusted R-square 0.6084

Notes：Robust t-statistics are shown in parentheses. *, ** and *** denotes the significance at the 10%, 5% and

1% level, respectively. Region fixed effects, industry fixed effect and year fixed effects are con- trolled in all

columns.
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4.4 Heterogeneity Analysis
4.4.1 Industrial Heterogeneity

There are obvious differences in the exhaust emission of different industries in

China, and there are also great differences in the adoption and distribution of

industrial robots in various industries. Therefore, the significant negative effect of

industrial robot adoption on air pollution in the baseline model may also have

industrial heterogeneity. We categorize the sample industries into three groups in

accordance with the reliance of various production factors in order to explore this

industrial heterogeneity: labor-intensive, capital intensive and technology intensive5,

and consider the effect of the industrial robot adoption in different types of industries

on air environment. Table 6 contains the results from the sub-sample. According to

the empirical findings, the use of industrial robots in labor- and technology-intensive

industries has resulted in a 1% significance level reduction in air pollution, while the

use of industrial robots in capital-intensive industries has resulted in a 5% significance

level reduction in industrial exhaust emission. The results in Table 6 also show that

the effect of industrial robots on air environment is robust in industrial heterogeneity.

Table 6. The results of industrial heterogeneity analysis

Variable

（1） （2） （3）

labor-intensive
capital-intensiv

e

technology-inte

nsive

ln robot
-0.019***

（-3.79）

-0.004**

（-1.78）

-0.014***

（-3.12）

Control Variables YES YES YES

Observation 1126 1493 617

Adjusted R-square 0.7239 0.6892 0.7932

5
Labor-intensive manufacturing industries include food and beverage processing, textile and

garment products, wood and furniture manufacturing and paper and printing products;

Capital-intensive manufacturing industries include chemical products, rubber and plastic

products, non-metallic mineral products, metal processing and smelting, metal products and other

branches of manufacturing; Technology-intensive manufacturing industries include general and

special equipment manufacturing, automotive manufacturing, electronics and electrical equipment

manufacturing.
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Notes：Robust t-statistics are shown in parentheses. *, ** and *** denotes the significance at the 10%, 5% and 1%

level, respectively. Region fixed effects, industry fixed effect and year fixed effects are con- trolled in all columns.

Industrial robots are proven to have a stronger impact on the reduction of

industrial exhaust emission in labor-intensive and technology-intensive sectors when

compared to capital-intensive businesses. The findings of Graetz and Michaels (2018),

who discovered that robots have decreased the employment of less skilled workers,

are consistent with the industrial heterogeneity of industrial robots. We do believe that

there are differences in how industrial robots affect labor-intensive and

technology-intensive industries. On the one hand, labor-intensive businesses with a

high proportion of low and medium skilled workers— particularly those that need

formal manual labor and blue collar work— are most affected by the substitution

effect of industrial robots. Therefore, industrial robots have a greater impact on air

pollution in industries that require a lot of labor. The results support the conclusions

of a study by Pieri et al. (2018), who hypothesized that low-tech businesses benefit

more from technological progress. On the other hand, technology-intensive businesses

have enhanced their capacity to absorb industrial robots thanks to more advanced ICT

infrastructure and significant investments in the digital economy. IFR data show that

the three industries with the highest application rates of robots are also the most

technologically advanced. Therefore, compared to capital-intensive businesses, the

impact of industrial robots on air pollution is greater in those sectors.
4.4.2 Regional Heterogeneity

The level of economic growth and industrial structure vary significantly between

different regions of China, which may also affect how industrial robots are used. The

degrees of technology and R&D in various countries also range significantly, which

affects the spread and absorption rates of industrial robot technologies. Therefore, the

effect of industrial waste gas reduction from industrial robot applications in the base

model may vary regionally. According to the degree of economic development and

geographic location, this paper divides the sample regions into three regions: the

eastern region, the central region, and the western region. It then examines the effects

of industrial robots used in each region on the level of air pollution in order to
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demonstrate the regional heterogeneity. In Table 7, which displays the empirical

findings for the sub-sample, it can be seen that the explanatory variable in column (1)

has a coefficient of -0.021, which is significant at the 1% level, and that the

coefficient of industrial robot application in column (2) is -0.003, which is significant

at the 5% level. Surprisingly, column (3)'s results contradict those of columns 1 and 2,

and its coefficient is positive, albeit neither are significant at the 10% level. This

suggests that while the decrease of industrial exhaust gas in the western region is not

particularly significant, the use of industrial robots in the eastern and central regions

can greatly reduce the amount of air pollution. Additionally, the eastern region's use

of industrial robots has a better impact on reducing industrial exhaust emissions than

the central region. One explanation could be that the eastern region, in comparison to

other regions, has a superior climate for innovation and a greater potential to absorb

new technology. As a result, the eastern region can more effectively utilize how these

technologies affect the air environment. As a result, Hypothesis 2 has been confirmed.

Regional and industry heterogeneity are both present in the air pollution level

reduction effect of industrial robotics applications. This study explores the causes of

regional variations in terms of impact mechanisms in Section 4.5.

Table 7. The results of regional heterogeneity analysis

Variable
（1） （2） （3）

Eastern region Central region Western region

ln robot
-0.021***

（-4.13）

-0.003**

（-2.17）

0.001

（1.08）

Control Variables YES YES YES

Observation 1391 920 925

Adjusted R-square 0.7239 0.6892 0.7932

Notes：Robust t-statistics are shown in parentheses. *, ** and *** denotes the significance at the 10%, 5% and 1%

level, respectively. Region fixed effects, industry fixed effect and year fixed effects are controlled in all columns.

4.5 Mechanism Analysis
4.5.1 Regulation Mechanism Test
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We confirmed the moderating effect of absorptive capacity using a moderating

effect model to understand better the causes of regional variation in the decreased

impact of the air pollution level of industrial robots. The interaction terms of

absorptive capacity and industrial robot application with absorptive capacity were

gradually included following the test path in Eq. (2). Column (3) of Table 8 shows the

regression results. It shows that the regression coefficients of the independent

variables and the interaction term are negative at the 1% significance level, which

indicates a moderating mechanism. According to this theory, high absorptive capacity

is thought to positively increase the effect of industrial robot application on air

pollution levels. As a result, we proved Hypothesis 3.

Table 8. The results of the moderating mechanism test

Variable （1） （2） （3）

ln robot
-0.008***

（-2.69）

-0.007**

（-2.28）

-0.019***

（-3.96）

ac
-0.010

（-1.14）

0.019*

（1.66）

ln robot × ac
-0.011***

（-3.12）

Control Variables YES YES YES

Observation 3263 3263 3263

Adjusted R-square 0.9185 0.9073 0.9212

Notes：Robust t-statistics are shown in parentheses. *, ** and *** denotes the significance at the 10%, 5% and 1%

level, respectively. Region fixed effects, industry fixed effect and year fixed effects are controlled in all columns

This mechanism explains why the application of industrial robots in the East has

better air pollution reduction effects. The eastern region has a higher share of R&D

investment, so it has a stronger absorptive capacity and is able to adapt faster to

changes brought about by the environment of innovation and technological progress.

Industrial robots can therefore absorb more technology and have a greater capacity to

do so in the eastern region, where they can significantly contribute to the reduction of

industrial exhaust emissions. Contrarily, the R&D environment in the central and

western regions is worse, and enterprises find it challenging to absorb and implement
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the knowledge and technology of industrial robotics. The abatement impact is further

constrained by this, making it relatively moderate in the central and western regions.

Therefore, the impact of industrial robot applications on the decline in air pollution

levels is positively moderated by absorptive capacity.
4.5.2 Intermediary Mechanism Test

Because of this, industrial robots are better able to absorb technology in the

eastern part of the world, where they can dramatically reduce industrial exhaust

emissions. In contrast, the R&D environment is worse in the central and western areas,

and businesses find it difficult to understand and use the knowledge and technology of

industrial robotics. This further limits the abatement impact, making it rather mild in

the central and western regions. Absorbent capacity thus serves to positively attenuate

the effect of industrial robot applications on the reduction of air pollution levels. The

findings of the baseline regression are shown in column (1), and those of the

mediating mechanism model are shown in columns (2) and (3). First, at the 1% level

of significance, the estimation findings in column (1) show a negative value, i.e.,

industrial robots reduce air pollution. Second, it is negative at the 1% significance

level in column (2) while being positive at the same level in column (3), suggesting a

mediating mechanism. Additionally, the one in column (3) is unsignificant at the 1%

level of significance, demonstrating the relevance and partial mediation of the

mediating effect of energy intensity. The use of industrial robots thus indirectly

lowers the level of air pollution by reducing energy intensity, which acts as a mediator

and exhibits a partial intermediary impact. As a result, Hypothesis 4 is supported,

proving that the use of industrial robots dramatically lowers air pollution by reducing

energy intensity.

Table 9. The results of the mediating mechanism test

Variable
（1） （2） （3）

lnWG ln ei lnWG

ln robot
-0.008***

（-2.69）

-0.013***

（-4.83）

-0.007***

（-3.12）

ln ei
0.495***

（3.74）

Control Variables YES YES YES
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Observation 3263 3128 3128

Adjusted R-square 0.9185 0.9783 0.9201

Notes：Robust t-statistics are shown in parentheses. *, ** and *** denotes the significance at the 10%, 5% and 1%

level, respectively. Region fixed effects, industry fixed effect and year fixed effects are controlled in all columns.

5. Conclusion and Policy Recommendations

The economic effects of industrial robot applications have received more

attention in previous studies, while the environmental effects have received less

attention. Using data on industrial robot applications in manufacturing industries from

2006 to 2015 and based on the EKC model, this paper empirically examines the

effects of industrial exhaust emission reduction and the resulting heterogeneity

characteristics of industrial robot applications in 30 Chinese provinces and regions. In

addition, investigations on the moderation and mediation of air pollution mechanisms

provide insight into how industrial robot applications effect air pollution levels.

First, this study discovers that the use of industrial robots significantly lowers air

pollution levels. The use of industrial robots increases production output, optimizes

factor structures, and introduces technical innovation, which boosts energy efficiency

and lowers air pollution levels. Therefore, in order to achieve a green economy and

sustainable development, China should make efforts to promote the application of

industrial robots in various industries and regions, improve the coverage of industrial

robots, and fully recognize the important role of industrial robots in the reduction of

industrial exhaust emission.

The effects of industrial robot applications on the decrease of industrial waste gas

emissions are two-dimensionally heterogeneous in terms of industry and geography.

Industrial robot use in labor-intensive and technology-intensive industries has a more

notable impact on reducing industrial waste gas emissions than in capital-intensive

manufacturing businesses. Additionally, while the effect of reducing industrial

exhaust emissions in the western region is very limited, the application of industrial

robots in the eastern and central regions can dramatically lower air pollution levels.

The use of industrial robots in the eastern region has a better impact on reducing
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industrial emissions than it does in the central region. The use of industrial robots in

technology-intensive production should be encouraged as a priority, followed by

expansion to labor-intensive and capital-intensive manufacturing industries, taking

into account the two-dimensional heterogeneity of industries and locations. Industrial

robot application varies significantly from region to region. To continually increase

the application intensity of industrial robots and more effectively encourage the

decrease of air pollution levels, the central and western areas should use the eastern

region as a benchmark.

Finally, this study discovers that the influence of industrial robot application on

industrial exhaust emission reduction is subject to moderating and mediating factors.

High absorptive capacity improves the environment for innovation, which increases

the effect of reducing industrial waste gas emissions. On the other hand, the use of

industrial robots encourages reducing industrial waste gas emissions by favorably

influencing the rise in energy intensity. The effect of applying industrial robots to

reduce industrial exhaust emissions is partially mediated by improvements in energy

intensity. China should encourage increased R&D spending across the board,

strengthen its capacity for independent innovation, and support the thorough fusion of

manufacturing industries with digital technologies like artificial intelligence, big data,

and fifth-generation mobile communication (5G), using industrial robots as a conduit.

In addition to actively developing new sectors with low energy consumption, high

added value, and minimal harm to the environment while sustaining economic growth,

the government should restructure traditional, high energy-consuming industries.
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