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Abstract 
Triple-Negative Breast Cancer (TNBC) has a very poor prognosis. Inaccurate diagnoses and limited treatment 

options call for the discovery of new identifiers and drug targets for TNBC. In this research, the expression 

profiles of 165 TNBC tissues and 33 normal breast tissues were obtained. Differential analysis was performed, 

screening out 325 differentially expressed genes (DEGs), in which 155 genes were up-regulated and 170 genes 

were down-regulated. The DEGs were further explored through function and pathway enrichment analyses. 

Three machine learning algorithms, namely Absolute Shrinkage and Selection Operator (LASSO), Support 

Vector Machine - Recursive Feature Elimination (SVM-RFE), and Random Forest (RF), were applied to select 

features that are the most representative of TNBC. The results from the three algorithms were intersected, and 

the predictive power of the four overlapped genes was validated. Eventually, CKAP2, HIST1H3H, ESR1, and 

IL18 were identified to be biomarkers and therapeutic targets for TNBC. 
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1 Introduction 
Breast cancer has become the most commonly diagnosed cancer since 2020 (Lei et al., 2021). It has a high 

mortality, accounting for more than 15% of cancer deaths worldwide (Lei et al., 2021). Triple-Negative Breast 

Cancer (TNBC) is an invasive breast cancer subtype characterized by the absence of three receptors, estrogen 

receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Around 

12%-17% of breast cancer patients have TNBC (Foulkes et al., 2010). It has a poor prognosis, with a 25% 

recurrence rate and a 75% mortality rate within 3 months after recurrence (Yin et al., 2020; Zhang et al., 2015). 

TNBC is generally diagnosed by morphological imaging and immunohistochemistry (Penault-Llorca & Viale, 

2012). Morphological imaging techniques like ultrasound examination may identify the smooth border, which 

is typical of some TNBC tumors. Yet the imaging techniques cannot inspect the internal fibrosis and necrosis, 

which are more common in TNBC tumors (Penault-Llorca & Viale, 2012). Immunohistochemistry determines 

the expression level of ER, PR, and HER2. It is required to further validate the diagnosis. However, 

immunohistochemistry suffers from inaccuracy, as small proportions of TNBC tissue may still be ER, PR, or 

HER2 positive (Pusztai et al., 2010). This calls for more accurate diagnostic approaches. This is where gene 

expression profiling analysis steps into place. In the gene expression profiling analysis, TNBC is normally 

classified as a subtype of basal-like breast cancer, since 60% to 90% of the genes overlap in these two types of 

breast cancer (Goldhirsch et al., 2013; Yin et al., 2020). According to distinct transcriptome profiles, TNBC can 

be further divided into six subtypes, basal-like 1 (BL1), basal-like 2 (BL2), mesenchymal (M), mesenchymal-

stem-like (MSL), immunomodulatory (MI), and luminal androgen receptor (LAR) (Lehmann et al., 2011). 

Basal-like 1 TNBC expresses high levels of cell-cycle-related genes like PIK3CA and AKT2 (Yin et al., 2020). 

Basal-like 2 TNBC exhibits abnormal glycolysis, gluconeogenesis, and growth factor signaling pathways and 

expresses elevated levels of genes TP63 and MME (Lehmann et al., 2011). Mesenchymal TNBC is characterized 

by highly enriched cell differentiation, extracellular matrix receptor interaction, and cell motility pathways; it 

up-regulates genes like ABCB1 and HOX genes (Lehmann et al., 2011; Yin et al., 2020). Mesenchymal-stem-

like TNBC has an expression profile similar to mesenchymal TNBC but also up-regulates growth factor 

signaling pathways (Lehmann et al., 2011). Immunomodulatory TNBC, as its name indicates, enriches immune-

related pathways like immune cell signaling and cytokine signaling pathways (Lehmann et al., 2011). The 

luminal androgen receptor subtype is the most special among the six, Its hormone regulatory pathways are 

highly activated. It up-regulates androgen receptor mRNAs and other genes downstream of androgen receptor 
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targets (Lehmann et al., 2011).  

The phenotype of TNBC results in its insensitivity to endocrine therapies and most targeted therapies, which 

require the presence of at least one hormone receptor. Therefore, the standardized treatment for TNBC patients 

is chemotherapy. Commonly used chemotherapy drugs include taxanes, 5-fluorouracil, and more (Mustacchi & 

De Laurentiis, 2015; Yin et al., 2020). Taxanes interfere with microtubule formation, and 5-Fluorouracil’s 

metabolites are selective against tumor cells (Mustacchi & De Laurentiis, 2015; Yin et al., 2020). These 

chemotherapy drugs are often used in conjugation with one another. As patients grow resistant to chemotherapy 

drugs, immunotherapy, targeted therapy, or radiotherapy may also be introduced. Immunotherapy mainly 

focuses on checkpoint inhibitors and cancer vaccines (Vikas et al., 2018), targeted therapy attacks the subtle 

genetic and phenotypical differences between each TNBC subtype (Yin et al., 2020), and radiotherapy facilitates 

local control over the tumor before and after surgery (He et al., 2018). 

Unfortunately, the mentioned diagnostic methods and treatment options exhibit drawbacks. Despite the multiple 

phenotypical and genetic markers, misdiagnosis still happens more frequently in TNBC than in non-TNBC 

(Elfgen et al., 2019). Immunotherapy has high uncertainty, working differently for each patient. Targeted therapy 

options are limited for TNBC patients since there are few targets to attack. Radiotherapy requires a personalized 

design (He et al., 2018), which may burden patients and their families financially. Thus, there is an urgent need 

to identify novel diagnostic identifiers, which may also serve as therapeutic targets, for TNBC. 

The workflow of this study is shown in Fig 1. In this research, transcriptome data of 165 TNBC tissues and 33 

normal breast tissues were retrieved from the online database Gene Expression Omnibus (NCBI-GEO) for 

differential analysis. The identified up-regulated and down-regulated genes were explored through function and 

pathway enrichment analyses. Then, three machine-learning algorithms were used to screen for genetic 

identifiers from the training dataset. The models were validated using the testing dataset. The outputs of the 

three models were intersected to find the common genes. In the end, four critical genes, CKAP2, HIST1H3H, 

ESR1, and IL18, were discovered to be identifiers and therapeutic targets for TNBC. The purpose of this research 

is not only to identify new biomarkers for TNBC but also to further advocate for applying the method of machine 

learning to cancer studies, as the development of machine learning may play a crucial role in the future discovery 

of biomarkers for more cancers of poor prognosis. 
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Figure 1. The general workflow of the research. The graph was created with BioRender. 
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2 Materials and Methods 

2.1  Databases 

The dataset was downloaded from Gene Expression Omnibus (NCBI-GEO), a public functional genomics data 

repository supported by the National Center for Biotechnology Information (NCBI) (Home - GEO - NCBI, n.d.).  

GSE76250 was obtained by typing “TNBC homo sapiens” in the search bar. GSE76250 contains the whole 

expression profiles of the messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs) of 165 TNBC 

samples and 33 normal breast tissues. The platform was [HTA-2_0] Affymetrix Human Transcriptome Array 

2.0 [transcript (gene) version]. 

 

2.2  Identifying and Filtering Differentially Expressed Genes 

The expression matrix was pre-processed using the GEOquery package in R and went through quantile 

normalization by using the package affy (Davis & Meltzer, 2007; Gautier et al., 2004). Differential expression 

analysis was performed with the R package limma, and p-values were adjusted with the Benjamini-Hochberg 

method (Ritchie et al., 2015). The cut-off values were set at adjusted p-value less than 0.05 and |log2(Fold 

Change)| greater than 1. A gene is identified as an up-regulated gene when its adjusted p-value is less than 0.05 

and log2(Fold Change) is greater than 1; a gene is recognized as a down-regulated gene when its adjusted p-

value is less than 0.05 and log2(Fold Change) is less than -1.  

The heatmap exhibiting the differentially expressed genes (DEGs) was generated using the R package pheatmap. 

The volcano plot was made with the R package ggplot2.  

 

2.3  Function and Pathway Enrichment Analyses 

Gene Ontology (GO) Function Enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway 

Enrichment were performed for the identified DEGs by using the clusterprofiler package in R (Yu et al., 2012). 

GO Function Enrichment Analysis assigns the genes to three different groups of GO terms, Molecular Function 

(MF), Biological Process (BP), and Cellular Component (CC). KEGG Pathway Enrichment Analysis sorts genes 

into the biological pathways they belong to. Both enrichment analyses had a cutoff value of adjusted p-values 

less than 0.05. The p-values were adjusted using the Benjamini-Hochberg method. 
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Gene Set Enrichment Analysis (GSEA) was carried out using the R package clusterprofiler (Yu et al., 2012). 

The genes were first ranked based on log2(Fold Change) in decreasing order. Then the genes were mapped into 

KEGG pathways, and the enrichment score for each pathway was calculated. The enrichment score increases 

when a gene that is in the pathway was encountered and decreases when a gene that is not in the pathway was 

encountered. 

 

2.4  Machine Learning, Model Construction, Important Genes Identification, and 

Model Validation 

The data were divided into the training group and the testing group with a ratio of 7:3. The training group 

contained 116 TNBC samples and 23 normal samples. The testing group contained 49 TNBC samples and 10 

normal samples. 

Three machine learning (ML) algorithms, Least Absolute Shrinkage and Selection Operator (LASSO), Support 

Vector Machine – Recursive Feature Elimination (SVM-RFE), and Random Forest (RF) were applied. LASSO 

was performed with the R package glmnet with 10-fold cross-validation. The response type was set as 

“binomial”. The SVM-RFE model was constructed with the R packages e1071 and caret with 10-fold cross-

validation (Dimitriadou et al., 2009; Kuhn, 2008). The recursive feature elimination was performed with 50 

genes and with 10-fold cross-validation. The genes were ranked according to their significance each time the 

model was run. The average rank of each gene is calculated. The R package randomForest was used to train the 

RF model (Liaw & Wiener, 2002). RF randomly bootstraps genes into different nodes and calculates the 

importance of each gene based on the ability to decrease the impurity of the node. Each gene’s importance was 

reflected by the Gini index. The number of trees was set at 500.  

Critical genes identified by LASSO, the top 40 genes ranked by SVM-RFE and RF were plotted in a Venn 

diagram with the R package venn. The intersecting genes were selected for further analysis. 

The ML models were validated using the receiver operating characteristic (ROC) curve. The area under curve 

(AUC) and 95% confidence interval (CI) were also determined for the models. AUC indicates the usefulness of 

the model. An AUC higher than 0.8 means the model is very useful. 
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3 Results 

3.1  The Identification of Differentially Expressed Genes 

In the training group, 325 DEGs were identified using the cut-off value of adjusted p-value < 0.05 and |log2(Fold 

Change)| > 1. The results were shown in Fig. 2. Fig. 2A exhibits the expression level of the DEGs in the TNBC 

group and the control group after quantile normalization. The colors validate that the expression levels of the 

DEGs were significantly different in TNBC patients and normal people, further indicating that genetic mutations 

may contribute to TNBC. A partial list of the DEGs is shown in Table 1, and the full list can be seen in Table 

S1. In Fig. 2B, 155 DEGs (red) with a log2(Fold Change) greater than 1 were marked as up-regulated genes; 

DEGs (blue) with a log2(Fold Change) less than -1 were marked as down-regulated genes. All genes with 

|log2(Fold Change)| > 2 were labeled. The adjusted p-value was considered as well. The genes with an adjusted 

p-value less than 0.05 were considered to be significant DEGs. PIP and MMP1 were at the margin of the volcano 

map (Fig. 2B), indicating that they were the most differentially expressed genes. 

 
Figure 2. The differentially expressed genes in GSE76250. (A) The heatmap exhibited the expression level of the DEGs 
in TNBC tissues and the control group after quantile normalization. The expression level is reflected by the color bar. The 
more the gene was expressed in TNBC tissues compared to normal tissues, the redder the color is. The lesser the gene was 
expressed in TNBC tissues compared to normal tissues, the bluer the color is. (B) A volcano map showing the DEGs. Any 
DEG with a |log2(Fold Change)| > 2 was labeled. Up-regulated genes are colored in red, down-regulated genes are colored 
in blue, and genes with no significant changes are colored in grey. 

log2FC 
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Table 1. The top 100 differentially expressed genes (50 up-regulated and 50 down-regulated) in GSE76250. 

Up-regulated genes Down-regulated genes 

MMP1, TOP2A, ANLN, CXCL10, ASPM, TPX2, 
MKI67, CCNA2, CENPF, MMP13, ADAMDEC1, 
COL10A1, IF11, CXCL9, NUSAP1, DLGAP5, 
OTTHUMG00000154838, KIF14, NDC80, CENPE, 
NUF2, CEP55, HIST1H3B, SPP1, FNDC1, 
FAM111B, MMP12, NCAPG, TTK, PRR11, FPR3, 
KIF23, MELK, BUB1, CCNB2, FAM72D, CDK1, 
GBP5, CXCL11, PRC1, HIST1H3F, DTL, LYZ, 
STIL, CCL18, CKS2, OLR1, HIST1H2AB, 
CKAP2L, KPNA2 

MYH11, ABCA6, KIT, MUCL1, FABP4, PI15, 
ABCA8, PIK3C2G, ABCA9, ABCA10, SCGB2A1, 
FIGF, PIGR, ADH1B, SCGB2A2, SCGB1D2, TAT, 
ANKRD30A, OTTHUMG00000017969, PIP, 
CHRDL1, PROL1, FMO2, LAMA2, SCUBE2, TP63, 
SNORD114-1, ADH1C, SYNPO2, AK5, FGF10, 
SNORD114-3, ADAMTS9-AS2, TSHZ2, DMD, 
SNORD114-17, APOD, HPSE2, OGN, ADIPOQ, 
IGSF10, NTN4, OTTHUMG00000017971, CCL28, 
GRPR, LIFR, LRP2, SDPR, PTN, NOVA1 

 

3.2  Results of the Function and Pathway Enrichment Analyses 

The significant DEGs then went through GO Function Enrichment Analysis, which revealed the potential 

function characteristics of the genes, and KEGG Pathway Enrichment Analysis, which sorted genes into 

different biological pathways that might be critical to disease progression. 

There were 539 GO terms identified for the 325 DEGs, which are listed in Table S2. Most of the GO terms 

enriched in up-regulated genes were associated with the extracellular matrix and systematic development, 

including collagen-containing extracellular matrix, urogenital system development, and extracellular matrix 

structural constituent (Fig. 3A). The top 3 enriched GO terms for the down-regulated genes were closely related 

to cell replication, including nuclear division, organelle fission, and chromosome segregation (Fig. 3B). 

Twenty KEGG pathways were enriched. The full list is provided in Table S2, while the top 5 enriched KEGG 

pathways are exhibited in Fig. 3C (for up-regulated DEGs) and Fig. 3D (for down-regulated DEGs). The most 

enriched pathways for up-regulated genes were phosphoinositide 3-kinase – protein kinase B (PI3K-AKT) 

signaling pathway followed by extracellular-matrix-receptor interaction and peroxisome proliferator-activated 

receptor (PPAR) signaling pathway (Fig. 3C). The top 3 enriched pathways for down-regulated genes were cell 

cycle, cytokine-cytokine receptor interaction, and viral protein interaction with cytokine and cytokine receptor 

(Fig. 3D). 
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Figure 3. The results of GO and KEGG enrichment analysis. (A) Top 10 GO terms enriched for up-regulated genes. 
(B) Top 10 GO terms enriched for down-regulated genes. (C) Top 5 KEGG pathways enriched for up-regulated genes. (D) 
Top 5 KEGG pathways enriched for down-regulated genes. 

 

GSEA was then performed for the full expression data. The results are shown in Fig. 4. The enrichment score 

increases when the gene encountered is in the pathway and decreases when the gene encountered is not in the 

pathway. The up-regulated pathways with top 5 enrichment scores are exhibited in Fig. 4A; the exhibited 

pathways were the calcium signaling pathway, cAMP signaling pathway, chemical carcinogenesis – receptor 

activation, mitogen-activated protein kinase (MAPK) signaling pathway, and olfactory transduction. The down-

regulated pathways with top 5 enrichment scores, shown in Fig. 4B, included amyotrophic lateral sclerosis, 

human T-cell leukemia virus 1 infection, Huntington’s disease, Parkinson’s disease, and prion disease. The 

pathways with the highest and the lowest enrichment scores were the calcium signaling pathway and prion 

disease, respectively, indicating these two pathways function critically in TNBC pathology. 
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Figure 4. The results of GSEA enrichment analysis. (A) Top 5 enriched pathways for up-regulated genes. (B) Top 5 
enriched pathways for down-regulated genes. In both (A) and (B), genes were ranked from left to right based on their 
log2(Fold Change) (log2(Fold Change) reflects the level of differential expression). The gene with the highest log2(Fold 
Change) was on the far left. The enrichment score increases as a gene that is in the pathway was encountered, and the 
enrichment score decreases as a gene that is not in the pathway was encountered. 

 

3.3  Machine Learning and Potential Biomarker Selection 

Three models were successfully constructed using three machine-learning algorithms, LASSO, SVM-RFE, and 

RF (Fig. 5). 

In the model created using LASSO, lambda (λ) is the regularization parameter that controls the penalty. Fig. 5A 

exhibits the binominal deviance in response to each of the lambda values tested. The binomial deviance indicates 

the misclassification error. The lower the binomial deviance is, the more predictive power the model should 

have. The lambda for the model with the lowest misclassification rate was 0.0130826. In Fig 5A, the vertical 

dotted line on the left shows the lambda value with the lowest error rate; the vertical dotted line on the right is 

the highest lambda value of the model that is within one standard error from the lambda of the optimal model. 

Eventually, 12 genes with coefficients not equal to zero after penalization were selected to be candidate 

identifiers (Table 2). 
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The SVM-RFE model was dedicated to finding a statistical separation between the expression level of certain 

genes in TNBC tissues and normal tissues. The model returned the average rank of the gene in the 10-fold cross-

validation (Table S3). The higher the average rank is, the more predictive power the gene should have. The 

model also returned the error rate when 1 to 50 genes were incorporated. It was calculated that the error rate 

was the lowest when 40 genes were used in distinguishing TNBC tissues from normal tissues (Fig. 5B). 

Therefore, genes with the top 40 average rank were selected from the SVM-RFE model. 

The third model was constructed using the algorithm RF. The model returned the error rate when the data was 

assigned to different numbers of trees. In Fig. 5C, the black curve reflected the overall out-of-bag (OOB) error, 

and the green and red curves reflected the out-of-bag error when using the trees to classify the control group 

and the TNBC group, respectively. A low out-of-bag error is indicative of a better performance. The overall out-

of-bag error was the lowest when there were 27 trees (Fig. 5C). The importance of each gene was reflected by 

the Gini index. The Gini index reflected impurity. The more the Gini index of a gene decreased at each split, or 

the more impurity a gene is able to decrease, the more important the gene should be. The importance of the 

genes is shown in Fig. 5D. Genes with the top 40 importance were selected. 

The 12 genes from the LASSO model, the 40 genes from the SVM-RFE model, and the 40 genes from the RF 

model were intersected (Fig. 6). There were 4 genes shared by all three models, 4 genes shared by the LASSO 

and the SVM-RFE models, 2 genes shared by the SVM-RFE and RF models, and 1 gene shared by the LASSO 

and RF models. The full list of the candidate biomarker genes is provided in Table 2, and the common genes 

are in bold font.  

 

Table 2. The genes selected by the three machine learning algorithms. The intersecting genes are displayed in bold font. 

LASSO SVF-RFE RF 

CCL18, HIST1H3H, CKAP2, 
IL18, MUC15, PKHD1L1, 
ESR1, 
OTTHUMG00000164324, 
HMGCS2, 
OTTHUMG00000017664, 
FAM196B, PROL1 

HMGCS2, LYZ, ESR1, IL18, 
HIST1H3H, PKHD1L1, 
NCAPH, TOP2A, CCL18, 
MKI67, MMP12, SHCBP1, 
TPX2, BGN, HIST1H3B, 
ABCA6, IL33, FCER1G, MELK, 
CKAP2, MMP13, CD86, SDPR, 
CYP4Z1, ADH1B, TICRR, 
RGS1, CNN1, KIF18A, 
ADAMDEC1, NEK2, 

AS2, CKAP2, AASS, ARHGAP11B, 
ARHGAP11A, CDKN3, NDC80, 
HLF, FAM189A2, CENPE, 
CKAP2L, HIST1H2AB, ASPM, 
HIST1H3H, FOXM1, CEP55, 
PLA2G7, NTN4, FCGR1B, SPRY2, 
MMP1, ANLN, DLGAP5, 
HIST2H3A, CACHD1, MCM10, 
PLEKHH2, KIF14, HIST1H3J, 
TGFBR3, ESR1, 

仅
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OTTHUMG00000154838, 
MUC15, ANLN, BUB1, PLK1, 
INHBA, ABCA8, LRP2, CHL1 

OTTHUMG00000017664, 
MIR4524A, HIST1H2AG, CASC5, 
IL18, PLK1, HMMR, KIF2C, TP63 

 

  
Figure 5. The results of the three machine learning algorithms. (A) The model constructed with LASSO. The vertical 
dotted line on the left is the lambda (λ) value with the lowest binomial deviance. The vertical dotted line on the right is the 
λ value that is within one standard error from the best λ value. Twelve genes were eventually selected. (B) The model 
constructed with SVM-RFE. The top 40 genes were selected, as the error rate was the lowest when 40 genes were 
incorporated into the model. (C) The model constructed with RF. The black, green, and red curves indicate the out-of-bag 
(OOB) error for the overall performance, the control group, and the TNBC group, respectively. The out-of-bag error rate 
was the lowest when there were 27 trees. Genes with the top 40 importance were selected. (D) The top 40 important genes 
from the RF model, ranked by importance calculated from the Gini index. 

10
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Figure 6. The common genes in the output of the three models, LASSO, SVM-RFE, and RF. 

 

3.4  Model Validation 

The 4 common genes for the LASSO, SVM-RFE, and RF models were selected for further validation. 

The expression level of the four critical genes was compared in TNBC tissues and normal tissues (Fig. 7). The 

boxplots show that all four genes were very differently expressed. CKAP2, HIST1H3H, and IL18 were up-

regulated (Fig. 7A, 7B, 7D), and ESR1 was down-regulated (Fig. 7C). 

The models were validated with the receiver operating characteristics (ROC) curves. The curves were generated 

for both the training dataset and the testing dataset. The more a ROC curve approaches the upper left corner, the 

better the performance of the model. As shown in Fig. 8, in both the training dataset and testing dataset, the 

ROC curves for all four genes were near the upper-right corner, indicating that the models have high sensitivity 

(true positive rates) and low specificity (false positive rates). The area under curve (AUC) was calculated for 

each model as well. A model is considered good when its AUC exceeds 0.8. The AUC value was greater than 

0.8 for all the models constructed using either the training dataset or the testing dataset, which proved that the 

models were predictive. Moreover, although the training group always exhibited higher AUC than the testing 

group for the same gene, the differences were not large. The testing dataset performed almost as well as the 

training group, suggesting that the four genes have good and consistent predictive powers. 
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Figure 7. The expression level of the 4 critical genes in TNBC tissues and normal breast tissues (the controls). (A) 
CKAP2. (B) HIST1H3H. (C) ESR1. (D) IL18.  
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Figure 8. The ROC curve for the four critical genes. (A) CKAP2. (B) HIST1H3H. (C) ESR1. (D) IL18. For each gene, 
the curves of the training group and the testing group were mapped on the same axis. The y-axis represents sensitivity, the 
true positive rate. The x-axis represents specificity, the false positive rate. The 95% confidential intervals (95% CI) were 
calculated and presented in the graphs as well.  
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4 Discussion 
In this research, the expression profile of 165 TNBC tissues and 33 normal breast tissues were extracted from 

the dataset GSE76250. Differential gene expression analysis revealed 325 DEGs. Three machine-learning 

algorithms, namely LASSO, SVM-RFE, and RF, were applied. LASSO outputted 12 genes, SVM-RFE 

outputted 40 genes, and RF outputted 40 genes. Four genes, CKAP2, HIST1H3H, ESR1, and IL18, were common 

outputs of the three machine learning algorithms mentioned above (Table 2; Fig. 6). The predictive power of 

the four genes was then validated by ROC and AUC. The average AUC of the training group and the testing 

group for CKAP2, HIST1H3H, ESR1, and IL18 was 0.947, 0.908, 0.907, and 0.870, respectively. 

The enrichment analyses identified several pathways that need further exploration. In the top 3 functions 

enriched for the up-regulated DEGs, 2 of them were related to extracellular matrix (ECM). ECM is actively 

involved in the progression of breast cancer. The matrix metalloproteinases degrade ECM proteins to facilitate 

metastasis, the integrins and other enzymes on the surface of ECM enable cancer development, and stromal 

cells aid in constructing blood vessels for tumors (Jena & Janjanam, 2018). This could explain the up-regulation 

of ECM-related functions in TNBC. Surprisingly, the top 3 enriched functions for down-regulated genes were 

nuclear division, organelle fission, and chromosome segregation. These functions are expected to be up-

regulated instead of down-regulated, as cancer cells divide rapidly and constantly. Several pieces of research 

also identified nuclear division and organelle fission as top enriched functions; yet in these researches, the 

functions were enriched for up-regulated genes (Chen et al., 2022; Suo et al., 2020). Individual genes in the 

down-regulated functions were examined. Unfortunately, aside from BRIP1, a tumor suppressor gene that 

repairs DNA damage, HORMAD1, a gene encoding for a meiosis-specific protein, and KIF14, which delays the 

transition from metaphase to anaphase, all the other down-regulated genes were shown by previous studies to 

be up-regulated (Hung et al., 2013; Khan & Khan, 2021; Liu et al., 2020). Therefore, further investigations are 

needed to explain the abnormal down-regulation of these functions. As shown by the results of the KEGG 

pathway enrichment analysis, the top regulated pathway was the PI3K-AKT signaling pathway, whose 

abnormality is very common in all subtypes of breast cancer (LoRusso, 2016). The overexpression of upstream 

regulators of this pathway can lead to the progression of TNBC (Costa et al., 2018). Other enriched up-regulated 

pathways include the PPAR signaling pathway, which eventually activates the transcription factor PPAR-α and 

hence facilitates cancer development (Kwong et al., 2019). Cell cycle was the most down-regulated KEGG 

pathway, coinciding with the function enrichment analysis results. 
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The four significant genes were further examined. CKAP2 encodes for cytoskeleton-associated protein 2. The 

overexpression of CKAP2 should stabilize microtubules, leading to disrupted mitosis, abnormal cytokinesis, 

cell cycle arrest, and apoptosis (Tsuchihara et al., 2005). CKAP2 has already been identified as an indicator of 

breast cancer. A study by Kim et al. showed that CKAP2 can serve as an independent prognostic indicator of 

relapse-free survival in breast cancer patients, as CKAP2-positive cell count was strongly correlated with poor 

survival (Kim et al., 2014). Moreover, dos Santos et al. showed that the proliferation, migration, and aggregation 

of breast cancer cells were attenuated by knocking off CKAP2 (dos Santos et al., 2022), which proved that 

CKAP2 might be a good target in treating breast cancer. HIST1H3H belongs to a small cluster of histone genes, 

which encodes for a type of histone in the H3 family. It was also reported to be one of the prognostic predictors 

of breast cancer (Xie et al., 2019). ESR1 encodes for estrogen receptor 1. The down-regulation of ESR1 observed 

in this study is reasonable, as TNBC tissue does not express estrogen receptors. ESR1 was amplified in over 20% 

of breast cancers (Holst et al., 2007). IL18 encodes for interleukin-18 (IL-18), a type of pre-inflammatory 

cytokine. IL-18 was reported to be immunosuppressive, facilitating metastasis by up-regulating the expression 

of the immune checkpoint PD-1 (Terme et al., 2011). In breast cancer cells, IL18 expression was also up-

regulated by the hormone leptin via PI3K-AKT/ATF-2 signaling pathways, which eventually lead to metastasis 

(Li et al., 2016). Although CKAP2, HIST1H3H, ESR1, and IL18 were all proven to play a role in breast cancer 

identification or development, limited research was done specifically for TNBC. Kim et al. noted in their 

research that the predictive power of CKAP2-positive cell count was significant for TNBC (Kim et al., 2014), 

and the results of this research coincided with this finding. Aside from this, none of the other three genes was 

reported to have a special function in TNBC. This paper not only validated, from a machine-learning perspective, 

that CKAP2, HIST1H3H, ESR1, and IL18 are important for breast cancer but also proposed the four genes to be 

identifiers and therapeutic targets for TNBC specifically. 

People are constantly looking forward to finding approaches to diagnose cancer early and to determine the 

prognosis of cancer accurately. ML is certainly one of the most popular ways to achieve the goals. A great 

amount of data have been collected over the years in virtue of advances in technologies, and ML, capable of 

identifying patterns in complex datasets, has become the ideal data-processing tool (Kourou et al., 2015). 

Additionally, the error rate of ML decreases as more and more correctly pre-processed datasets were fed in, 

making classification and feature selection more accurate. This characteristic made ML more useful in future 

cancer studies, as the datasets available for training will increase significantly in the foreseeable future. 
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Despite the encouraging discoveries, several limitations were present in this study. Firstly, the dataset was 

imbalanced; the number of TNBC tissues was five times more than the normal breast tissues that served as the 

control group. The sample size of the control group should be expanded using algorithms like Synthetic Minority 

Oversampling Technique (SMOTE) to improve the performances of the machine learning algorithms. Secondly, 

the three ML algorithms each exhibit their own limitations. When a group of genes is colinear, LASSO tends to 

select only one gene from the group and eliminate all others. SVM-RFE is very sensitive to noises, and small 

errors may lead to very poor performance. RF performs badly when the data is imbalanced, which unfortunately 

happened in this study. Although the error rate was to an extent reduced by accepting only intersecting genes, 

the results should be viewed critically as errors may still exist due to the limitations of the three algorithms. 

Thirdly, all experiments were conducted in silico. In vitro and even in vivo research is needed to further validate 

the findings. Lastly, the study failed to consider other factors that may affect the genotype; the not-considered 

features included but were not limited to patients’ age, biological sex, ethnicity, and medical history. Future 

studies are expected to map more thorough and representative profiles for patients of all kinds.  

 

 

 

5 Conclusion 
In this study, through performing differential gene expression analysis and conducting function and pathway 

enrichment analyses, DEGs of TNBC were found to relate to multiple functions and pathways regarding the 

extracellular matrix and cell cycle. By further applying three machine learning algorithms, four crucial genes, 

namely CKAP2, HIST1H3H, ESR1, and IL18, were identified to be potential diagnostic identifiers and 

therapeutic targets of TNBC. 
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