
2022 S.T. Yau High School Science Award (Asia)

Research Report

The Team
Registration Number: Math-160

Name of team member: CHEUNG Bock Man, CHAN Hiu Long
School: Baptist Lui Ming Choi Secondary School
City, Country: Hong Kong, China

Name of supervising teacher: LEE Wing Yan
Position: Mathematics Teacher
School/Institution: Baptist Lui Ming Choi Secondary School
City, Country: Hong Kong, China

Title of Research Report: On The Coprime Product Series and Its Di-
vergence and Bounds

Date: 2022/08/31

1

20
22

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

  仅
用
于

20
22
丘
成
桐
中
学
科
学
奖
公
示

 



On The Coprime Product Series and Its Divergence and

Bounds

Cheung Bock Man, Chan Hiu Long

Abstract

It has been shown by L. Euler [1] that the sum of the reciprocals of all
prime numbers diverges; and its growth is proportional to log log n. Others
[2, 3] have shown that, in particular:∑

p≤n

1

p
= log log n+M +O

(
1

log2 n

)
,

where M = 0.261497... is a constant.
We estimate and prove an asymptotic formula on the reciprocals of the coprime
series ∑

s1s2

1

s1s2

where the sum runs over natural numbers s1 and s2 that satisfy (s1, s2) = 1
diverges, specifically, ∑

s1s2≤n

1

s1s2
=

6

π2
log2 n+O(log n)

and in general we conjecture that,∑
s1···sk≤n

1

s1 · · · sk
=

1

ζ(k)
logk n+O(logk−1 n)

where the sum runs over s1, · · · , sk with (s1, · · · , sk) = 1 . This implies that
that the density of coprime k-tuples over Nk is 1/ζ(k).
Keywords: analytic number theory, series, coprime, divergence, bound, den-
sity, reciprocals
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1 Introduction

Prime numbers have been in the spotlight in Number Theory historically. In
fact, the properties of the reciprocals of prime numbers are well known and
thoroughly studied, such as their asymptotic growth and density. Another
mathematically similar concept is coprimality (Two or more integers whose
greatest common divisor is 1). As of date, however, not much attention is
received on the reciprocals of products of coprime pairs, which seems like a
“general” version of primes.
In this paper, we ask ourselves: How does the series of reciprocals products of
coprime numbers asymptotically behave like? Precisely, can we derive an
expression for

∑
(s1,s2)=1, 1≤s1s2≤n, s1,s2∈N 1/s1s2, based on some known facts

such as the probability of 2 randomly chosen integers being coprime is
1/ζ(2) = 6/π2? To answer this, we will start from some basic facts in prime
numbers, and then discuss an asymptotic formula for the series of reciprocal
products of coprimes, which holds several implications on the density of
coprimes.

At the time of Euclid, the fact that there are an infinite number of prime
numbers has been known. Since then, mathematicians have developed new
approaches to tackle the problem.

In the 1730s, Leonhard Euler discovered a way [1] to prove that the sum of the
reciprocals of all prime numbers diverges, with the key observation that the
harmonic series, later recognized as lims→1 ζ(s), can be factored into a product
of primes.

Take P to be the set of prime numbers.

To see why
∑

p∈P 1/p diverges, we begin with the Euler Product of the
Riemann Zeta function,

ζ(s) =

∞∑
n=1

1

ns
=

∞∏
p∈P

(1− p−s)−1

Taking log on both sides, we have

log

∞∑
n=1

1

ns
= −

∑
p

log(1− p−s)

=
∑
p

∞∑
m=1

m−1p−ms

=
∑
p

p−s +
∑
p

∞∑
m=2

m−1p−ms

Note that

∑
p

∞∑
m=2

m−1p−ms <
∑
p

∞∑
m=2

p−m =
∑
p

1

p(p− 1)
< 1

6
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It suffices to show that
lim
s→1

∑
p

p−s → ∞

since ζ(s) → ∞ as s → 1.

Now, informally, since the harmonic series grow in the order of log n, for very
large n we have

log
∑
i≤n
i∈N

1

i
∼ log log n

and so we expect
∑

p≤n 1/p ∼ log log n for large n.

In fact, there is an asymptotic formula proven by Mertens [2] that for the
summation of reciprocals of primes up to n, we have∑

p≤n

1

p
= log log(n) +M +O

(
1

log n

)
(1)

where M = γ +
∑

p(log(1− 1/p) + 1/p) ≈ 0.261497212847643 is a constant
and γ ≈ 0.577 is the Euler-Mascheroni Constant.
The error term was improved by E. Landau [3] in 1909, in which by exploiting
the prime number theorem he found that it can be further bounded to

O(e−(logn)1/14). Others [4] estimated it as

∣∣∣∣∣∣
∑
p≤n

1

p
− (log log(n) +M)

∣∣∣∣∣∣ ≤ 1

10 log2 n
+

4

15 log3 n

Compared with primality, a closely related concept is coprimality. We say the
greatest common divisor of a and b is d, if d is the largest integer d such
that d|a and d|b. We write this as gcd(a, b) = d, or if no ambiguity is present,
(a, b) = d. We say two integers a and b are coprime if d = 1. It is natural to
ask whether similar results can be established for a summation of the form∑

1≤s1,s2≤n
(s1,s2)=1

1

s1s2
, (2)

Or further, for k integers s1, s2, · · · , sk which are coprime (their greatest
common divisor is 1), we are tempted to make the generalization:∑

1≤s1,s2,··· ,sk≤n
(s1,s2,··· ,sk)=1

1

s1s2 · · · sk
(3)

Establishing such a formula for equation (2) will be one of the main goals in
this paper.

An interesting interpretation of the asymptotic formula of the prime numbers
is the concept of density, or loosely speaking, how “frequent” prime numbers
appear in a set.
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Definition 1. The density of a set S (whose items are k-tuples of the form
(s1, s2, ..., sk) where each si is a positive integer) over Nn is written as ρNnS
(or simply ρS) and defined as

lim
n→∞

#{s ∈ S : si ≤ n for all 0 < i ≤ k}
nk

.

Example 1. The density of even numbers over N is 1/2, and the density of P
over N is 0.

By the explicit formula proved in Merten’s Second Theorem, a straightforward
implication is that the prime numbers has density 0 in the natural numbers,
since

lim
n→∞

log log n

n
= 0.

2 Asymptotic Formula of the Sum of
Reciprocal Products of Two Coprime
Numbers

In this section, our goal is to make an educated guess on the rate of divergence
(growth of partial sums) of the sum of reciprocals of coprime series, an analog
for the reciprocals of primes, and explain the motivation behind.

2.1 Divergence of the Series

The divergence of ∑
1≤s1,s2≤n
(s1,s2)=1

1

s1s2

can be seen as a corollary to the divergence of the harmonic series.

Proposition 1. ∑
1≤s1,s2≤n
(s1,s2)=1

1

s1s2
→ ∞ as n → ∞.

Proof. ∑
1≤s1,s2≤n

(s1,s2)

1

s1s2
≥
∑
1≤n

1

n

by letting s2 = 1. But the sum on the right diverges as n → ∞, so the sum on
the left diverges as well.

2.2 An Estimate of the Series

Now that we have shown that the above series diverges, we can set off to make
our estimation based on a few observations.

The probability that a number is divisible by any prime p is 1/p. Hence, the
probability for two numbers to be both divisible by p is 1/p2, and 1− 1/p2 for
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at least one to not be divisible by p. Because two numbers are coprime if they
share no common divisors, and on top of that we know the probability that
any finite collection of divisibility events associated with distinct primes is
mutually independent, we have

Pr(two integers are coprime) =
∏
p∈P

(
1− 1

p2

)
=

∏
p∈P

(
1− p−2

)−1

−1

= ζ(2)−1

Pr(two integers are coprime) =
1

ζ(2)
(4)

Another observation is that the harmonic series
∑n

i=1 1/i ≈ log n+ γ, where
γ = 0.577... is the Euler-Mascheroni constant, so combining the two, it is
reasonable to have the following estimate:

∑
1≤s1,s2≤n
(s1,s2)=1

1

s1s2
≈ 1

ζ(2)

n∑
s1=1

1

s1

n∑
s2=1

1

s2

≈ 1

ζ(2)
(log2 n+ 2γ log n+ γ2)

≈ 1

ζ(2)
log2 n+ constant · log n

Therefore, we conjecture that

Theorem 1. ∑
1≤s1,s2≤n
(s1,s2)=1

1

s1s2
=

1

ζ(2)
log2 n+O(log n).

After checking our estimate using direct computation, it further suggests that
the error term is O(log n). Refer to Section 5 for detailed figures.

In the next section, we attempt to prove this conjecture rigorously.

3 Proof of the Asymptotic Formula

Before we show the following results, we shall define the Möbius µ and Euler φ
functions.

Definition 2. Let n = pa1
1 pa2

2 . . . pak

k be the prime factorization of n.
(a) The Möbius function, µ(n), is defined as

µ(1) = 1

µ(n) =

{
(−1)k if ai = 1 for all 1 ≤ i ≤ k

0 otherwise.

(b) The Euler totient function, φ(n), is defined as the number of positive
integers not exceeding n which are coprime to n.

9

20
22

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward

  仅
用
于

20
22
丘
成
桐
中
学
科
学
奖
公
示

 



To begin with, we first establish a few theorems and lemmas, taken from M.
Ram Murty’s Problems in Analytic Number Theory [4].

Theorem 2. For all n ≥ 1,

∑
d|n

µ(d) =

{
1, n = 1

0, n > 1.

In other words, the sum is a characteristic function of the number 1.

Proof. When n = 1, the statement is clearly true. However, when n > 1, let
n = pa1

1 pa2
2 . . . pak

k as above. Notice that µ(d) ̸= 0 if and only if d = 1 or a
product of distinct primes. Therefore∑

d|n

µ(d) = µ(1) + µ(p1) + · · ·+ µ(pk) + µ(p1p2) + · · ·+ µ(pk−1pk)

+ · · ·+ µ(p1p2 · · · pk)

= 1 +

(
k

1

)
(−1) +

(
k

2

)
(−1)2 + · · ·+

(
k

k

)
(−1)k

= (1− 1)k

= 0.

Lemma 1. For all n ≥ 1, ∑
d|n

φ(d) = n.

Proof. Let S be the set {1, 2, · · · , n}, and for each d that divides n, let

A(d) = {k | (k, n) = d, 1 ≤ k ≤ n}.

All such A(d) are disjoint, and their union is precisely S. Now
#A(d) = φ(n/d), which is the number of k’s such that (k/d, n/d) = 1.
Therefore ∑

d|n

φ(n/d) =
∑
d|n

φ(d) = n.

Lemma 2.
φ(n)

n
=
∑
d|n

µ(d)

d
.

Proof. Suppose

f(n) =
∑
d|n

µ(d)(1/d).

10
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Then ∑
d|n

f(d) =
∑
d|n

∑
e|d

(d/e)µ(e)

=
∑

est=n

sµ(e)

=
∑
s|n

s
∑
e|ns

µ(e)

= n (by Theorem 2).

By Lemma 1, letting f be φ gives us the required formula.

Lemma 3. ∑
n≤x

(n,k)=1

1

n
∼ φ(k)

k
log x, forx → ∞.

Proof. By Theorem 2,∑
n≤x

(n,k)=1

1

n
=
∑
n≤x

1

n

∑
d|(n,k)

µ(d)

=
∑
d|k

µ(d)
∑
n≤x
d|n

1

n

=
∑
d|k

µ(d)

d

∑
t≤x/d

1

t

=
∑
d|k

µ(d)

d

(
log

x

d
+O(1)

)
,

by the asymptotic formula for the harmonic series. Therefore,

∑
d|k

µ(d)

d

(
log

x

d
+O(1)

)
=
∑
d|k

µ(d)

d
log x−

∑
d|k

µ(d)

d
(log d+O(1))

=
∑
d|k

µ(d)

d
log x+O(1)

=
φ(k)

k
log x+O(1) (by Lemma 2)

Lemma 4.
n∑

k=1

φ(k) =
3n2

π2
+O(n log n).

Proof. See [6].

11
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Lemma 5. (Abel’s summation formula) Suppose {an}∞n=1 is a sequence of real
numbers and f(t) is a continuously differentiable function on [1, x]. If

A(t) =
∑
n≤t

an,

then ∑
n≤x

anf(n) = A(x)f(x)−
∫ x

1

A(t)f ′(t)dt.

Proof. See [5], pp. 17-18.

We are equipped with enough tools to prove Theorem 1.

Proof. (Theorem 1) ∑
1≤s1,s2≤n
(s1,s2)=1

1

s1s2
=

n∑
s1=1

∑
s2≤n

(s1,s2)=1

1

s1s2

=

n∑
s1=1

1

s1

∑
s2≤n

(s1,s2)=1

1

s2

∼
n∑

s1=1

1

s1

φ(s1)

s1
log n

= log n

n∑
s1=1

φ(s1)

s21

By Lemmas 4 and 5,

n∑
s=1

φ(s)

s2
=

3n2

π2n2
−
∫ n

1

(
3t2

π2
+O(t log t)

)(
−2

t3

)
dt+O

(
log n

n

)
=

3

π2
+

∫ n

1

(
6

π2t
+O

(
log t

t2

))
dt+O

(
log n

n

)
=

3 + 6 log(n)

π2
+O

(
log n

n

)

Therefore, ∑
1≤s1,s2≤n
(s1,s2)=1

1

s1s2
= log n

(
3 + 6 log(n)

π2
+O

(
log n

n

))

=
6

π2
log2 n+

3

π2
log n+O

(
log2 n

n

)
=

1

ζ(2)
log2 n+O(log n)
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See Figure 5.3 for a computed upper bound for the constant of proportionality
of the O(log n) term.

This theorem immediately implies a generalization of the condition on
(s1, s2) = m:

Corollary 1. ∑
1≤s1,s2≤n
(s1,s2)=m

1

s1s2
=

1

ζ(2)

log2 n

m2
+O(log n)

Proof. Writing s1 = mr1 and s2 = mr2,∑
1≤s1,s2≤n
(s1,s2)=m

1

s1s2
=

1

m2

∑
1≤r1,r2≤n/m

(r1,r2)=1

1

r1r2

=
1

m2

(
1

ζ(2)
log2

n

m
+O

(
log

n

m

))
=

1

ζ(2)

1

m2

(
log2 n− logm log n+ log2 m

)
+O(log n)

=
1

ζ(2)

log2 n

m2
− constant · log n+ constant +O(log n)

=
1

ζ(2)

log2 n

m2
+O(log n)

4 Discussion and Conclusion

4.1 Sum of Reciprocals of k-tuple Coprime Numbers

In view of Proposition 1, it is easy to see that sum of k-tuples of reciprocals of
coprime integers s1, s2, · · · , sk also diverges, since the summands in∑
1≤s1,s2,··· ,sk≤n
(s1,s2,··· ,sk)=1

1

s1s2 · · · sk
coincide with

∑
1≤s1,s2≤n
(s1,s2)=m

1

s1s2
, by letting s3, · · · , sk = 1.

However, determining the rate of divergence is not as easy. Based on the
results proven above, it is natural to conjecture on the formula of the general
case of Theorem 1 for the k-tuple sum.

The argument of the probability of coprimality can be extended to k integers
similar to Equation (4), and is shown [7] to be

Pr(k integers are coprime) =
1

ζ(k)
(5)

Therefore, we propose that

13
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Conjecture 1. ∑
1≤s1,s2,··· ,sk≤n
(s1,s2,··· ,sk)=1

1

s1s2 · · · sk
=

1

ζ(k)
logk n+O(logk−1 n)

It is not hard to see why this conjecture is possibly true. Informally, we have

∑
1≤s1,s2,··· ,sk≤n
(s1,s2,··· ,sk)=1

1

s1s2 · · · sk
≈ 1

ζ(k)

k∏
i

n∑
si=1

1

si

≈ 1

ζ(k)
(log n+ γ)k

=
1

ζ(k)

(
k∑

r=0

(
k

r

)
γk−r logr n

)

≈ 1

ζ(k)
logk n+O(logk−1 n)

Numerically, we also check that for the k = 3 case, the plots seem to match
the prediction that the sum has an error of magnitude log2 n. For details see
Section 5.

4.2 Consequences of the Asymptotic Formula

Some interesting consequences arise if we infer that equation (6) is true. For
instance, if we generalize the notion of greatest common divisors, we have

∑
1≤s1,s2,··· ,sk≤n
(s1,s2,··· ,sk)=m

1

s1s2 · · · sk
=

1

ζ(k)

logk n

mk
+O(logk−1 n) (6)

It sheds light on why 1
ζ(k) seems to be the only suitable candidate to be the

coefficient of Conjecture 1. If we know that for some constant A,

∑
1≤s1,s2,··· ,sk≤n
(s1,s2,··· ,sk)=m

1

s1s2 · · · sk
= A · log

k n

mk
+O(logk−1 n)

The product of k-harmonic sums gives the sum of all possible combinations of
1

s1s2···sk . By grouping them based on their greatest common divisors

(s1, s2, · · · , sk), we have

logk n ≈
k∏

i=1

(∑
si

1

si

)
=

∑
1≤s1,s2,··· ,sk≤n
(s1,s2,··· ,sk)=1

1

s1s2 · · · sk
+

∑
1≤s1,s2,··· ,sk≤n
(s1,s2,··· ,sk)=2

1

s1s2 · · · sk
+ · · ·

≈ A

(
logk n

1k
+

logk n

2k
+ · · ·

)
= A logk n · ζ(k)

14
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Comparing the coefficients, we have A · ζ(k) = 1, meaning that A = 1
ζ(k) , and

we are done.

Finally, to speak a few words on the density of k-tuples of coprimes in Nk,
notice that from the asymptotic form of the harmonic series,

∑
1≤s1,s2,··· ,sk≤n

1

s1s2 · · · sk
=

k∏
i

n∑
si=1

1

si

≈ (log n+ γ)k

= logk(n) +O(logk−1 n)

Hence, we can deduce that the required density is equal to

lim
n→∞

1
ζ(k) log

k(n) +O(logk−1 n)

logk(n) +O(logk−1 n)
=

1

ζ(k)
.

Note that 1
ζ(k) increases monotonically as k increases. This is because the

density of primes less than n decreases to 0 when n is very large. As such, the
probability that 2, 3, · · · , k numbers be coprime would be large as well.

4.3 Future Work

In this paper, we have come up and given a rigorous proof on the sum of the
reciprocals of two coprime numbers. However, it remains open to show
rigorously that Conjecture 1 holds.

For the complete proof, it is suggested that one can apply the following result
[8],

n∑
k=1

φ(k)

ks
=

ζ(s− 1)

ζ(s)
(7)

and Theorem 1 to approach this conjecture. For instance, in the case of
reciprocals of triple coprime product series, we have

∑
1≤s1,s2≤n
(s1,s2)=1

1

s1s2
=

1

ζ(2)
log2 n+O(log n)

(
n∑

s3=1

φ(s3)

s33

)(∑
s3

1

s3

) ∑
1≤s1,s2≤n
(s1,s2)=1

1

s1s2
=

(
ζ(2)

ζ(3)

)
(log n)

(
1

ζ(2)
log2 n+O(log n)

)
n∑

s3=1

φ(s3)

s33

∑
1≤s1,s2,s3≤n

(s1,s2)=1

1

s1s2s3
=

1

ζ(3)
log3 n+O(log2 n)

Future work remains to show that left hand side is asymptotic to∑
1≤s1,s2,s3≤n
(s1,s2,s3)=1

1

s1s2s3
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so the k = 3 case of our conjecture can be proved. (See Figure 5.6 for a
computed upper bound for the constant of proportionality of the O(log2 n)
term.) Furthermore, we can inductively use this trick to prove its
generalization for reciprocal product series of k-tuple coprimes.

5 Figures of Numerical Computations

Figure 5.1: S2(n) =
∑

1≤s1,s2≤n
(s1,s2)=1

1
s1s2

.
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Figure 5.2: The error of S2(n) from the estimation 1
ζ(2) log

2 n.

Figure 5.3: The constant C in S2(n) =
1

ζ(2) log
2 n+ C log(n) +O(1) has an

upper bound of 1.43 as suggested by the computational result.
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Figure 5.4: S3(n) =
∑

1≤s1,s2,s3≤n
(s1,s2,s3)=1

1
s1s2s3

.

Figure 5.5: The error of S3(n) from the estimation 1
ζ(3) log

3 n.
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Figure 5.6: The constant C in S3(n) =
1

ζ(3) log
3 n+ C log(n2) +O(log n) has

an upper bound of 2.00 as suggested by the computational result.
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