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1 Introduction

Given two n x n real matrices A, B, an n dimentional real column vector ¢, the horizonal
linear complementarity problem (abbreviated as “HLCP(A, B, q)”) is to find vectors z,w € R”
to satisfy

Az—Bw=gq, 2>0, w>0, zl'w=0. (1)

It is noted that the inequality here is componentwise, z” is the transpose of vector z. Obviously,
when B is the identity matrix, problem (1)will be reduced to the linear complementarity problem,
which is denoted as LCP(A4, q).

Complementarity problems come from many real problems in scientific computation, such
as contact problems, obstacle problems, free boundary problems for journal bearings, the Nash
equilibrium point of a bimatrix game, financial pricing problems and so on; details can be found
in reference [1]. To solve horizonal linear complementarity problems, the frequently used meth-

3]

ods are interior point method [, reduction to LCP I, projected splitting method [ and so on.



In 2010, the author of [5] proposed the modulus-based matrix splitting iteration method to solve
linear complementarity problems. The good performance of this method in numerical computa-
tion contracted lots of scholars’ research, which promotes this type of method to be developed
well and have wide applications. For example, the modulus-based type methods to solve linear
complementarity problems 617 the modulus-based type methods to solve nonlinear comple-

mentarity problems 1827

and the modulus-based methods to solve implicit complementarity
problems 25-33] and so on. In 2019, scholars applied the modulus-based matrix splitting iterative
method to solve horizonal linear complementarity problems ¥, and obtained the convergence
theory when the system matrices A, B are positive definite and H,-matrices. In practical numer-
ical computations, the modulus-based accelerated over-relaxation iterative method is frequently
used, which refers several parameters to chose. Improper iterative parameters may cause the
divergence of the iteration sequence. So it is necessary to discuss the range of parameters that

guarantee the convergence.

The rest of this paper is organized as follows: the necessary notations, definitions and con-
clusions, and the description of modulus-based accelerated over-relaxation method are presented
in section 2; the choice of parameters which guarantee the convergence of the iterative method
is discussed in section 3; in section 4, some numerical examples are given to demonstrate the

theoretical analysis; finally, we give some conclusions.

2 The MAOR iterative method

Firstly, the necessary notations, definitions and conclusions will be given, and all of them
can be found in [1].

For two given matrices A = (a;5), B = (bij;) € R™*", the notation A > B (A > B) means
for arbitrary (4,7), 1 <i < m,1 < j < n, there holds a;; > b;; (a;; > b;;); specially, if B is the
null matrix, then we call A is a nonnegative (positive) matrix. A positive diagonal matrix is
a diagonal matrix with positive diagonal entries. Here, we denote (|ai;|) as the absolute value
matrix of A, Dg,—L4 and —U,4 are the diagonal, strictly upper triangular and strictly lower
triangular parts of A, respectively. If A is nonsingular with all the non-diagonal entries being
non-positive, and A~! > O, then we call 4 is an M-matrix. If (A) = ({a);;), the comparison

matrix of A, is an M-matrix, where

<a>ii = |aii|7 <a>’Lj = —|CLU|,Z,] = 17' te 7naj ?é iv

then A is called an H-matrix. Specially, an H-matrix with positive diagonal entries is an H-

matrix.



For A= M — N, if M is nonsingular, we call A = M — N is a splitting of A. Furthermore,
if (A) = (M) — |N|, then we call the splitting A = M — N is an H-compatible splitting of A; if
(M)—|N|is an M-matrix, then A = M — N is an H-splitting of A. Obviously, an H-compatible
matrix of an H -matrix is an H-splitting, but not vise versa, the counterexample can be found
in [23]. For an H-matrix A, we have A is nonsingular, and |[A~!| < (A)~1. If (A) — |B| is an
M-matrix, then (A) is also an M-matrix, and there holds p((4)~1)|B| < 1.

Next, we are going to give the modulus-based matrix splitting iteration method for solving
horizonal linear complementarity problems. Let z = %(|x\ +x),w = %Q(m —z) in (1), where
Q) is a positive diagonal matrix, v is a positive constant. Consider the matrix splittings A =
Mjs— Ny, B = Mp— Np, then (z,w) is the solution of horizonal linear complementarity problem

(1) if and only if z satisfies the following fixed-point equation
(Ma+ MpQ)z = (Na+ NgQ)z + (BQ — A)|z| + q.

The modulus-based matrix splitting iteration method proposed in [34] can be described as

follows:

Algorithm 2.1 (1)Chose initial vector (0 € R™, let k = 0;
(2)Find z* ) e R™ by solving the following system

(Ma -+ Mp)al) = (Ny + Np@)al) + (BQ = )a)| + 74, @

(B)Let z(k+1) — %(’:L'(k+1)| + :L‘(k+1)), w(k+1) — %(‘x(k+1)’ _ :L‘(k+1)),'
(4)If (z(k+1),w(k+1)) satisfies the stop criteria, stop the iteration; otherwise, let k := k + 1,
return to step (2).

Specially, if we chose
D —BiL; N (1 —«a;)D; + (o — Bi) Li + i U;

(67} (67}

M;

where «a; € (0,2),3; > 0 are iterative parameters (i = A, B), then we will have the MAOR
iterative method. The modulus-based succesive over-relaxation (abbreviated as MSOR) iter-
ative method, the modulus-based Gauss-Siedel (abbreviated as MGS) iterative method and
the modulus-based Jacobi (abbreviated as MJ) iterative method are the special cases when
the quaternion array («a,ap,84,0p) is chosen as (a4, ap,aq,ap), (1,1,1,1) and (1,1,0,0),
respectively. The existence and uniqueness of the solution of horizonal linear complementarity

problem (1) can be found in [34].

When A, B are both H-matrices, the following convergence result of Algorithm 2.1 for

solving horizonal linear complementarity problems are given in reference [34]:



Theorem 2.1 Let A, B be Hi-matrices, A = Mg — N be an H-splitting of A and B =
Mp — Np be an H-compatible splitting of B. Suppose the positive diagonal matriz ) satisfies
that Ma + MgQ) is an H,-matriz, Q > DAD;, |bijlwi; < laijl,i,5 = 1,---,n,i # j, and
for bjj # 0, sign(b;;) = sign(ai;). Then for arbitrary initial vector ) the iterative sequence
{(z(*k+1)] w(k’ﬂ))}i‘;o generated by Algorithm 2.1 will converge to the solution of horizonal linear

complementarity problem (1).

Later, the authors of reference [35] generalize the conditions in Theorem 2.1 and obtained

the following conclusion:

Theorem 2.2 Let A, B be Hy-matrices, A = M4— N4 be an H-splitting of A, and the splitting
B = Mp — Np satisfies Dy, > 0. Suppose the positive diagonal matrixz €0 satisfies that My +

Mg is an Hi-matriz, and
(Mp)Q > (M), |Na| > |Np|2

Then for arbitrary initial vector (), the iterative sequence {(zF+1) wk+1)}* = generated by

Algorithm 2.1 will converge to the solution of horizonal linear complementarity problem (1).

3 Main Results

Firstly, based on the conditions in Theorem 2.1, we derive the choice of the iterative pa-
rameters a4, 4, ap, fp in the modulus-based accelerated over-relaxation method to guarantee

its convergency, which is stated in the following theorem.

Theorem 3.1 Suppose A, B are Hi-matrices, the positive diagonal matriz 0 satisfies 0 >
DADEl, |bij\wjj S |aij|,i,j = 1,-'- ,n,i 75 j, and fOT bij 75 0, sign(bij) = sign(aij). When
0<Bp<ap<l,ap # 0 and aa, B4 satisfy one of the following conditions

(1)

2
0<pfa<aa<_——, aa#0,
A

1+
(2)

20484 < ap < Ba<2—2pafa,

where py = p(D;*|Cal), then for arbitrary initial vector %), the modulus-based accelerated over-

relazation iterative method for solving horizonal linear complementarity problems will converge.

Proof: From Theorem 2.1, we can see that the conditions Q > DaDZ', |bijlwi; < |aij],i,5 =

1,---,n,i# j and sign(b;j) = sign(a;;) are independent to the splittings of A, B, so we only need
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to analyse the sufficient conditions for A = M4 — N4 being an H-splitting of A, B = Mp — Np
being an H-compatible splitting of B, and M4 + Mp{) being an H-matrix, respectively.

Firstly, we will analyse the sufficient conditions for A = M4 — N4 being an H-splitting.
From the definition of H-splitting, we only need to find a sufficient condition for (M4) — |N4|
being an M-matrix. Since A is an Hi-matrix, we have D4 > 0. From the expressions of M4, Mp
in MAOR iterative method, it can be easily found that
A—Ballal =1 —aalDa — |aa — BallLa| — aa|Ua|

aa
_ [ =1 —aallDa—[Ba+|aa = BalllLal — ca|Ua|
s

(Ma) — |Na| = D

As 0 < ag <2, |l —aa| > 1—ay, there always hold that 1 — |1 —a4| > 0 and 0 < %}O‘A' <1.
In the following, we will discuss from case to case:
(1) When aoqg > B4 > 0,4 # 0, we have

11— a4l 1-[1-oaul,
A A

(Ma) — |Na| = Da— (|La|+[Ual) = — |Cal.

From the result in [1], we know that the condition p4 < M can make sure that (M) —|N4|
1—|1—a4]
aa

is equivalent to pg4 < 1,paas < 1 and (14 pa)as < 2 being true simultaneously. It is noticed

is an M-matrix. By simple computation, we can see that the validity of inequality pa <

that when py < M

, pa < 1,paas < 1 always holds true. Thus a sufficient condition for
(My) — |Na| being an M-matrix is (1 + pa)aa < 2, that is ag < m. It follows that, when
0<Ba<ay< ﬁ,aA #0, A= My — Ny is an H-splitting.

(2) When 0 < ag < (B4, we have

1-1-— OéAIDA (284 — aa)|La| + aa|U4

(Ma) — [Na| =
QA aA
1—1]1—ay 284 26A
>l B, By,
QA A
1—|1— 284
oa

From the result in [1], we know that a sufficient condition for (M4) — |N4| being an M-matrix
1-[1—aa]

284 -
It is noticed that since 1 — |1 — a4| < ag < B4, then for arbitrary 0 < ag < [4 there

always holds % < 1. Meanwhile, the validity of inequality pa < % is equivalent

is that K is an M-matrix, and a sufficient condition for K being an M-matrix is pg4 <

to pa < %, 2p4B84a < 1 and 2pa84 < ag < 2 — 2paf4 being true simultaneously. So when
20404 < aq < B4 < 2—2paBa, the splitting A = M4 — N4 is an H-splitting.
Secondly, we will analyse the sufficient condition for B = Mp — Np being an H-compatible

splitting. From the definition of H-compatible splitting, we know that the only thing we need to



do is to find a sufficient condition for (B) = (Mp) — |Np| being true. Since B is an H-matrix,
we have (B) is an M-matrix too, and D > 0. Then (B) = (Mp) — |Np| becomes

1-11=asll, 85— lon —Bsl

Dp —|La+Ua| =
ap ap

|Lp| — |Usl. (3)

In order to make (3) true, we only need to make sure that 1 —|1—ap| = ap and fp+|ap—LBp| =

ap hold true simultaneously, which means
0<pp<ap<lap#0.

Lastly, we will analyse the sufficient condition for M4 + MpBS2 being an H,-matrix. Since
Dy, Dp,Q) are all positive diagonal matrices and a4, ap are all positive, we have that the

diagonal part of

Dy —faLly n Dp — BpLp
o aB

My + MpQ) = Q,

which is =4 + DB ), is positive. It is easy to get that

D
(M4 + MpQ) = cTA + 79 |7LA + ﬁ—BLBQ’
A

and matrix (Mg + MpQ) is an M-matrix. So in the MAOR iterative method, for arbitrary
€1(0,2),8;>0,(i=A,B), Ma+ MpQ is an H,-matrix.

Combining the above analysis, we can obtain the result of this theorem. B

Remark 3.1 We notice that, when matrix B is the identity matriz, the MAOR iterative method
for solving horizonal linear complementarity problems will be the one for solving linear comple-
mentarity problems. At this case, from the result in Theorem 3.1, for arbitrary0 < ap = fg <1,
when 0 < ag = Pa < ﬁ, the MSOR iterative method converges; we can see that the bounds
for ay is bigger than the ones in [5]. It is noticed that, under condition(1), the inequality
0 < pa < 1 naturally holds, then 1 < ﬁ < 2. Thus, when agp = g = 1,ay = Ba =1, we
can have the convergency of MGS iterative method for solving horizonal linear complementarity
problems; when oy = agp = 1,84 = B = 0, we can have the convergency of MJ iterative method

for solving horizonal linear complementarity problems.

It is found that in actual implementation the MSOR iterative method will still converge
when ap > 1, which inspires us to improve the conditions in Theorem 3.1. From Theorem
2.2, we know that the conditions A = M4 — N4 being an H-splitting and M4 + MpS) being

an H,-matrix are the same as those in Theorem 2.1, and in MSOR iterative method and MJ



iterative method, the splitting B = Mp — Np naturally satisfies Dy, > 0. So the only thing

we need to do is to find the conditions to guarantee
(Mp)Qt = (Ma), |Na| = |Np[S.

Firstly, in the modulus-based Jacobian iterative method, it is easy to find that the condition
(Mp)Q > (M,) becomes Q > Dy D3, and [Na| > |Np|Q means 4, j = 1, -+ ,n,i # j, |bijlwj; <
la;j|. All these conditions are the same as those in Theorem 3.1, so MJ iterative method
converges.

Secondly, in the MSOR iterative method, since a4 = 84 and ag = Bp, the constraint on a4
is0<aa< 1+ from Theorem 3.1. Meanwhile, the condition (Mp)Q > (Ma), |Na| > |Np|Q

is equivalent to

b

%wuz aA ‘bw’w]j§|aw|aza]—1 : 7n7i>j7 (4)
1—ap|bi 1 .
| g§| wi; < l aOéA|a”’ |b2]’w]j < |az]’77/7] = 1 M, <.
Obviously, for all 4,j = 1,--- ,n,i < j there always holds |b;j|w;; < |a;j|. Then we will discuss
by cases:
(i) When aB = 1, then %w i =0< - aA'a“ is true for arbitrary w;;. In this case, for

0<ap< m, if Q> aDADB , the MSOR iterative method will converge.
(ii))When ap # 1, from condition (4) we have

ap _ ap|ll —ay _
— byt < wy < om{l—oqg:aiibiil' (5)

Then we should find the values of a4, ap to make sure that the range of w;; in (5) is non-empty.
It is noticed that if 1 > a4 > agp > 0or 2 > ag > ay > 1, we will have Q = DAD]§1 only when
ag=ap;ifl>ap<ag>0o0r2>a4>ag>1lor2>ag>12>ay>0,aq4+ag <2or
2>a4>1>ap>0,a04+ap > 2, we have |1 — ay| > |1 — ap|, and thus 3—§DAD]§1 <Q>
ap|l— OZA\D D—

aall-ap]

Summarizing the above analysis, we can have the following theorem.

Theorem 3.2 Suppose A, B are H.-matrices, the positive diagonal matriz Q satisfies |bij|lw;; <
laijl,i,5 =1,--- ,n,i # j. Then for arbitrary initial vectors z©),

(1)when Q > DaDy', the modulus-based Jacobian iterative method will converge;

(2)when Q > iDADE,l,aB = 1,a4 € (0, ﬁ), the modulus-based successive over-relaxation
iterative method will converge;
(3)when Q = DaDg' ap = as € (0,1) U(1+P ,2), the modulus-based successive over-relazation

iterative method will converge;



(4 )when ‘;—’jDAD; <Q> %DAD;, and one of the following conditions is true,
(4-1)

O<ag<ap<l,

(4-2)

l<ap<ag<

)

1+ pa

(4-3)

2
O<ap<l<aup< ,aq +ap > 2,
14+ pa

(4-4)

O<apg<l<ap<2,aq+ap <2,

the modulus-based successive over-relazation iterative method will converge.

4 Numerical Experiment

In this section, we will give some examples to test the above theoretical analysis in section

In all the following numerical experiments, the initial vector is chosen to be z(?) = 2¢ € R™,
where e is the column vector with all entries being 1, v = 1,00 = DAD;, qg = Az* — Bw*,
where z* = (0,1,0,1--)T, w* = (1,0,1,0,---)T € R™. In the MSOR iterative method, the
optimal parameters a4, ap are chosen as the ones with least iteration steps(which is denoted
as ‘IT’). The iteration time is denoted as ‘CPU’, whose unit is second; the stopping criteria is

RES < 107 | where ‘RES’ is defined as
RES(z™) := [|42® — Bw®) — |,

or k reaches the maximal number of iteration steps which is 1000 in our paper. All the compu-
tations are performed in MATLAB with double machine precision where the CPU is 2.40 GHz
and the memory is 4.00 GB.

Let I, be the n-dimensional identity matrix, consider the following examples.

Example 4.1 %4 Let m be a given positive integer, n = m?. Chose A = A +upl,, B = B+,



in (1), where

I, S I, S
A= “In, S B = S :
I,
I, S S

S = tridiag(—1,4, —1) € R™*™ s a tridiagonal matriz.

Example 4.2 %4 Let m be a given positive integer, n = m?. Chose A = A +uply, B = B+,

in (1), where

S —0.51,, S
15, S  —05I, - S
A= 15, S B = S ,
—0.51,,
-15I, S S

S = tridiag(—1.5,4, —0.5) € R™*™ s a tridiagonal matriz.

Example 4.3 59 Let m be a given positive integer, n = m?. Chose A = A +pl,, B = B+vlI,

in (1), where

S -1, —I, S
S =1, S
A = S —I, 7B = S ’
I,
S S
4 -1 -1 0
4 -1
0 O 4 --- 0 O
S = . . . . . . € Rmxmv
-1
4

18 an upper tridiagonal matrix.



We should note that, since the positive diagonal matrix 2 = D AD;, the conditions in
Theorem 3.1 “|bj;|lwj; < |aij|,i,7 =1,--- ,n,i # j, and for b;j; # 0 there is sign(b;;) = sign(ai;)”
are true for A, B in all the three examples here.

The numerical results when parameters (i, v) are (0,0) and (0,4) in examples 4.1, 4.2 and
4.3 are listed in Tables 1, 3, 5 and Tables 2, 4, 6, respectively. By computation, it is easy to
find the optimal parameters in MSOR iterative methods. In Example 4.1, when (u,v) = (0,0),
n > 162, the optimal parameters are (aa,ap) = (1,1.7); when (u,v) = (0,4), n > 20%, the
optimal parameters are (a4, ap) = (1,1.1). In Example 4.2, when (u,v) = (0,0) and (u,v) =
(0,4), n > 502K}, the optimal parameters (a4, ap) are (0.8,2.1) and (1.3,1), respectively. In
Example 4.3, when (u,v) = (0,0), n > 1282, the optimal parameters are (a4, ag) = (0.8,2.1);
when (u,v) = (0,4), n > 502, the optimal parameters are (a4,ap) = (0.5,1.5). Actually, we
find that the optimal parameters in MSOR iterative methods for solving all the examples are
independent to the sizes of the problems. Thus, in the following numerical results which are

solved by MSOR iterative methods, the optimal parameters are chosen as those listed above.

Table 1: Numerical results for Example 4.1 when p=v =0
m 64 128 256 512 1024

IT 95 99 102 106 109
MJ CPU | 0.0200 0.0850 0.3220 1.7550 7.0290
RES | 8.8936 8.7364 9.8594 8.7102 9.3671
IT 59 61 63 65 67
MGS | CPU | 0.0110 0.0500 0.1980 1.1250 4.6050
RES | 7.5899 8.7908 9.4246 9.7680 9.9627
IT 37 39 40 42 43
MSOR | CPU | 0.0010 0.0350 0.1350 0.7290 3.1970
RES | 9.3283 7.1322 8.7977 6.0260 6.9788

As we are expected, the MSOR iterative method has the best numerical performance with
the optimal parameters, especially when the sizes of problems are large. It is noted that, since
the strictly lower triangular parts of A and B in Example 4.3 are zeros, then the numerical
results of the MGS iterative method and the MJ iterative method for solving this example are
the same, which can also be shown in Tables 5 and 6. Meanwhile, we find that some of the values
for the iterative parameters (a4, ap) do not satisfy the conditions in the previous theorems, for
example, when oy > 2 or ap > 2, the iteration methods can also converge. This means the

conditions are sufficient but not necessary for convergency.
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Table 2: Numerical results for Example 4.1 when y =0,v =4

m 64 128 256 512 1024
IT 128 133 137 142 146
MJ CPU | 0.0370 0.1360 0.4400 2.3460 10.0290
RES | 9.0080 8.9363 9.9367 9.2581 9.9921
IT 112 117 121 125 129
MGS | CPU | 0.0340 0.1010 0.4100 2.2550  9.2410
RES | 9.8619 8.7882 8.9821 9.0059  8.9457
IT 102 106 110 114 118
MSOR | CPU | 0.0290 0.0860 0.3930 2.1020 8.9950
RES | 9.6586 9.5206 9.0486 8.4547 7.8343
Table 3: Numerical results for Example 4.2 when p=v =0
m 64 128 256 512 1024
IT 93 98 102 106 109
MJ CPU | 0.0160 0.0870 0.3130 1.6970 7.6940
RES | 9.9534 9.4476 9.2471 8.4346 9.2158
IT 41 43 44 46 47
MGS | CPU | 0.0100 0.0350 0.1360 0.8240 3.4410
RES | 7.7255 7.1258 9.5827 7.4643 9.3205
IT 27 29 29 31 31
MSOR | CPU | 0.0060 0.0250 0.0830 0.5690 2.4040
RES | 7.6257 4.1188 9.1010 4.1609 8.5184

5 Conclusion

When the systematic matrices A, B are H -matrices, we discussed the choice of parameters
in modulus-based accelerated over-relaxation method for solving horizonal linear complemen-
tarity problems HLCP(A, B, ¢). Numerical results further demonstrate the theoretical analysis.
We must admit that the conditions we obtained are sufficient but not necessary, further research

still should be carried out.
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Table 4: Numerical results for Example 4.2 when y =0,v =4

m 64 128 256 512 1024
IT 127 132 137 142 146
MJ CPU | 0.0240 0.0930 0.4690 2.4010 9.6400
RES | 9.5224 9.9677 9.7029 9.1461 9.9299
IT 105 109 113 117 120
MGS | CPU | 0.0220 0.0860 0.3890 2.1060 8.6100
RES | 8.3500 8.7889 8.7010 8.3801 9.6259
IT 99 103 107 111 115
MSOR | CPU | 0.0200 0.0810 0.3430 2.0370 8.3850
RES | 8.9971 8.7408 8.1325 7.4450 6.7693
Table 5: Numerical results for Example 4.3 when p=v =0
m 128 256 512 1024 2048
IT 120 129 135 140 145
MJ CPU | 0.0780 0.3430 2.1030 8.8880 35.3320
RES | 9.3945 9.3624 9.5031 9.6934  9.2926
IT 120 129 135 140 145
MGS | CPU | 0.1100 0.3120 2.0930 8.7180 35.9480
RES | 9.3945 9.3624 9.5031 9.6934  9.2926
IT 103 110 115 120 124
MSOR | CPU | 0.0620 0.2620 1.7810 7.7870 30.9570
RES | 9.7921 9.5975 9.7330 8.6096  8.6564
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