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Abstract

Road sign recognition under high-speed driving scenarios faces numerous challenges, such as motion blur and low resolution.
Traditional approaches tend to focus on improving the capability of recognition networks, which may result increased inference
time. From a different perspective, we propose a novel mathematical problem: how to design a road sign system that is more
casily recognizable by computers in complex environments.

To address this problem, we simplify the road sign design task into a combinatorial problem. Specifically, we investigate the
possibility of selecting M road signs from a given candidate set to minimize the corresponding training-testing error rate. To
achieve this, we combine machine learning and simulated annealing to provide an optimal road sign selection solution. Our
method considers M sets of candidate signs, K choices for each set, encompasses the relationships among KM distinct road signs,
and ultimately identifies M highly distinguishable signs. Experimental results demonstrate that our proposed road sign design
solution achieves excellent recognition accuracy in various blurry scenarios.

The road sign design solution presented in this paper can provide valuable reference suggestions for the government in
designing new national standard road signs. Additionally, in specific enclosed environments such as ports and mines, this
solution can enhance the reliability of autonomous driving technology. Therefore, in the era of widespread adoption of
autonomous driving systems, our solution can be widely applied to mitigate traffic accidents caused by road sign recognition
errors. Furthermore, the new problem and corresponding algorithm introduced in this paper can find applications in various other
scenarios, such as character design in animation.
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1 Introduction

According to an analysis by the US Department of Transportation in 2018, 94% of traffic accidents are caused by human drivers.
In order to reduce the occurrence of traffic accidents, autonomous driving systems and advanced driver assistance systems have
been rapidly developed. Many car manufacturers, such as Honda, Toyota, Mercedes-Benz, BMW, and Audi, have emphasized the
use of technologies related to autonomous driving and driver assistance. These technologies utilize cameras to recognize speed
limit signs and provide prompts or assistance to the drivers [1-3].

As visual information is a fundamental component of existing transportation systems, the key functionalities of all current
autonomous driving systems rely on cameras to provide visual information for road condition recognition, complemented by
LIDAR and radar to prevent collisions. In terms of road condition recognition, the recognition of road signs is one of the
important problems that need to be addressed.

In machine learning-related courses, we learn that machine learning requires learning the distribution of samples through a
dataset and building a model for recognition. Researchers in the field of artificial intelligence often focus on improving the
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algorithm capacity to enhance the accuracy of recognizing images captured by cameras using existing given road signs. For
instance, Richard Xue's work on CT classification, which received the silver award in the 2021 Yau Awards, adopted a multi-
angle and multi-task training approach to improve performance. However, there are still many challenges in this approach: 1)
Many road signs are inherently confusing in design, with numerous signs that have similar appearances but drastically different
meanings, leading to confusion; 2) Many road signs have complex patterns, making critical information difficult to discern from a
distance; 3) Existing methods to address low resolution or blurring in recognition mostly rely on deep learning networks, which
have limited real-time capabilities and compromise safety to some extent; 4) Existing deep learning-based road sign recognition
systems are mostly trained on existing data and may not possess strong transferability when encountering new or specialized road
signs, requiring retraining to achieve good recognition models, which is costly.

(More recognizable)
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Figure 1 Instead of enhancing the classifiers of machine learning, this project discusses how to obtain more recognizable
classification objectives under a specific application (such as autonomous driving).

Therefore, I discussed with my advisor the possibility of improving the overall accuracy of the system by changing the design
of road signs used in road sign recognition. Although my advisor mentioned that this strategy may not be applicable to self-driving
companies, it could be considered by the government to revise the road signs and replace them with a more machine-readable set
of signs, thereby enhancing the accuracy of autonomous and assistive driving systems for the benefit of society as a whole.
Furthermore, during China Adolescents Science & Technology Innovation Contest, experts also highlighted the potential of our
approach to design road markers for internal environments such as mines and ports. It is worth noting that this project presents a
novel algorithmic problem and provides an initial solution, which involves the design and selection of training labels that could be
applied to domains beyond autonomous driving. In section 5.6, we demonstrate this approach using the example of designing
cartoon characters.

Instead of focusing on improving the accuracy of road sign recognition, this study aims to address the issue from the source of
the data itself. By enhancing the design feasibility of road signs and devising a more discernible road sign solution, we aim to
enhance the recognition capability of autonomous driving systems. Through a series of research endeavors, we aspire to develop a
systematic methodology for road sign design, allowing us to create a set of road signs based on this approach. By doing so, we can
significantly improve the recognition accuracy of road signs for both autonomous and assistive driving systems, consequently
elevating the overall safety of intelligent driving.

1.1 Challenges in Road Sign Design

In the spring of 2023!, we explored the use of generative models like Stable Diffusion for road sign generation. We constructed a
dataset of 30 sentences related to road signs and fed them into Stable Diffusion, expecting it to generate new road sign designs.
The results, as shown in Figure 2, were as follows:

1n the spring of 2023, my teacher from YINGCAIJIHUA (% =+ it Xll), a plan jointly organized by the China Association for Science
and Technology and the Ministry of Education for cultivating talents for scientific and technological innovation among middle
school students, introduced us to the cutting-edge technology of generative models. We also came across videos on platforms
like Bilibili, where users showcased images generated using Stable Diffusion. Intrigued, we as high school students decided to
explore the use of Stable Diffusion for road sign generation as a class project. This appendix provides background on the
educational context of the project.



a road sign indicate that parking | A road sign indicating no | A road sign showing no | A road sign showing there's
car is restricted here bicycles allowed ahead motorcycle a circular road

Figure 2 Signs generated using stable diffusion

1. Stable Diffusion occasionally produced interesting road sign designs, but more often it failed to capture the meaning of our
instruction.

2. Even when generating road signs, there was no guarantee that the algorithmic output would be easily distinguishable from
existing road signs.

3. Modifying the Stable Diffusion algorithm proved to be excessively complex for this project.

Clearly, attempting to make machines directly generate easily recognizable combinations of road signs would be too intricate and
challenging. While generative models show promise for creative applications, road sign generation requires further research into
controllability and interpretability. We intend to explore techniques like class-conditional guidance to improve the coherence of
generated signs in future work.

1.2 Transforming Generation Problem into Selection Problem

In the field of information competitions, various combinatorial optimization problems arise frequently. For example, trucks can
choose different nodes to deliver goods, or different countries can dispatch different envoys for diplomatic purposes. The ultimate
goal is to find the most optimal solution with maximum overall value. Given this background, can we also consider transforming
road sign generation problem into an optimization problem?

o> 0RO 0BG

Original road signs Self-designed road signs Road signs selected by algorithm
Figure 3 Example of road sign selection

As shown in Figure 3, let's assume that we have designed a set of candidate road sign solution in advance. Let M represent the
number of road sign types, and for each type, we have designed K candidate road signs, where K represents the number of choices
for each road sign type. Therefore, the total number of candidate road sign designs is KM, resulting in KM possible combinations.
Consequently, we can transform the problem of generating easily recognizable road signs into the task of selecting the
combination with the highest classification accuracy among the KM designed road sign combinations.

Hence, road sign design can be regarded as a combination of manual design and optimal selection. However, finding the
combination with the highest accuracy among the given combinations is a complex task, requiring an algorithm capable of
efficiently searching for the optimal combination. In this study, we employed the Simulated Annealing Algorithm (SAA) to
quickly search for the ideal road sign solution in terms of recognition accuracy. We further validated the effectiveness of the
searched road sign solution through experiments.
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Figure 4-a Recognition accuracy under different blur levels

The horizontal axis is the degree of blur of different traffic signs,
and the vertical axis is the recognition accuracy of the model under
several solutions. It can be seen that our simulated annealing
solution achieves better recognition accuracy under high blur
conditions.
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Accuracy rate 75.8% Figure 4-c Head worn display box
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Due to the different imaging principles between
- @ . the human eye and the camera, the images
obtained by the camera at high speeds are often
more blurry than those captured by the human eye.

Accuracy rate 82.5%

Figure 4-b The contrast of original road sign and algorithm selected

road sign under blur degree=100

The classification accuracy rate of algorithm selected road sign

outperforms original road sign by 12% in average.

The primary contribution of this paper is the significant improvement in classification accuracy of road signs after redesign
and selection, which can reduce the probability of traffic accidents caused by misidentification in autonomous driving/assisted
driving systems. Specifically, this study presents several innovative aspects:

1. We provide and design a set of road sign solutions with higher classification accuracy, and propose a selection method
based on the Simulated Annealing Algorithm (SAA) for choosing the optimal combination of road signs.

2. We break away from the traditional optimization approaches for recognition by introducing a novel idea for improving
recognition accuracy, which is to modify the objects being recognized instead of changing the recognition system. Experimental
results demonstrate that our algorithm outperforms randomly selected road signs or existing road signs, achieving a 6-20%
improvement in recognition accuracy across 55 different road signs under various degrees of blur.

3. To validate the universality of our designed and selected road sign solutions, we conduct cross-model validation
experiments, demonstrating significant improvements in recognition results for Model B after implementing the solutions
designed by Model A. This validates the generality of our approach and provides a feasible solution to guide the design of optimal
strategy selection methods for similar research work.

The remaining sections of this paper are organized as follows: in Section 3, we test the performance degradation of deep
learning models, including classification models and detection models, under motion blur. In Section 4, we introduce our road
sign design algorithm. In Section 5, we conduct extensive experiments to demonstrate the effectiveness and generalization
capability of our proposed method.

2 Related Works

2.1 Visual Detection and Recognition in Autonomous Driving

Visual detection and recognition technologies play a crucial role in autonomous driving systems, especially in the recognition of
road signs and vehicles. However, the identification of blurry and low-resolution road signs remains a challenging problem.
Previous studies have indicated that damages, low resolution, and motion blur are the main causes of recognition errors in road
signs [4-6]. Among them, addressing the issue of low-resolution and motion blur in road sign recognition is of particular
importance due to the difficulty of mitigating damages problem through other technical means.

2.2 Recognition of Blurry and Low-Resolution Images

Blurry and low-resolution images are common types of image degradation caused by factors such as distance, focus blur, and
motion. There are two main approaches to address the recognition of low-resolution images: one is to restore the image resolution
before recognition [7], and the other is to directly train recognition models using blurry images [8]. However, both methods can
only partially alleviate the decrease in recognition accuracy caused by low pixel density, and their performance rapidly
deteriorates with increasing levels of blur.

2.3 Road Sign Redesign

Some car manufacturers have proposed improving road sign materials to enhance visibility, especially during nighttime. Some
research has suggested using electronic signs to communicate information to vehicles and assist in road sign recognition [9].
However, these methods have not been widely applied due to cost considerations and other constraints. Although existing Al-
based methods can generate road signs, the generated signs often suffer from poor legibility, as shown in Figure 2.

3 Challenges in Motion Blur Road Sign Recognition

The performance of a basic recognition system can deteriorate when it is affected by factors such as motion blur. In this section,
we aim to experimentally verify that even with the use of advanced deep learning methods, the accuracy of recognition can still
experience significant declines.



3.1 Qualitative Observations on Real-World Images

We collected experimental data from real-life scenarios using an Apple 11 (12-megapixel) smartphone positioned at the passenger
seat. Two speed limit road signs encountered during the journey are shown in Figure 5. With the naked eye, it is almost possible
to determine that the road sign on the right indicates a speed limit of 30 km/h (though it could also be mistaken for 20 km/h).
However, machines may struggle to accurately identify this sign, resulting in a drop in classification accuracy. On the other hand,
the road sign on the left is completely blurred and illegible.

Consider the following scenario: the distance from the blurred road sign to the front of the car in the direction of motion is
approximately 20 meters (along the direction of the road), and the lateral distance from the car to the roadside where the sign is
located is approximately 10 meters. Assuming a car speed of 50 km/h, the driver's reaction time is only 0.5 seconds,
corresponding to a distance of about 7 meters traveled. It is challenging for a car moving at 14 m/s to react within the remaining
distance, which greatly increases the risk of accidents. Even the relatively clear road sign on the right in the captured image is not
considered clear when observed under a camera. If misidentified as 80 km/h, it could lead to even more hazardous situations in the
context of autonomous driving or when the vehicle needs to perform auxiliary analysis.

Figure 5 Road sign capture on highway

3.2 Traffic Sign Recognition Baseline

To establish a benchmark for our research and validate the effectiveness of our classification methods, we first need to recognize
clear road signs. In this study, we utilized the MobileNet-v2 model to perform preliminary training and validation on a traffic sign
dataset consisting of 55 types. The road signs used in this dataset were obtained from the Lisa Traffic Sign Dataset, which features
American road signs.

Due to the limited data available, we applied data augmentation techniques to the road sign images. Considering the unique
characteristics of road signs, operations such as flipping were not applicable. Instead, augmentation mainly involved adjusting
brightness, selecting minor angles, and applying slight affine transformations. 20% of each type of road sign was set aside as a test
set. For our research, we employed the pre-trained MobileNet-v2 model, which is a lightweight model designed for mobile
devices. Despite its faster training speed compared to ResNet50, it maintains a high level of accuracy. The end-to-end training in
our study was based on this model architecture.

The results of the tests showed that the accuracy obtained by directly extracting features was 76.3%, while fine-tuned model
increased the accuracy to 87.8%. This finding indicates that fine-tuned model leads to higher accuracy in road sign recognition.
The following experiments will also use fine-tuned model as the final standard. Furthermore, as shown in Figure 6, t-SNE can be
employed to visualize the feature space. t-SNE is a data visualization tool that reduces high-dimensional data to 2-3 dimensions
while preserving inter-feature distances. The t-SNE results demonstrated that road signs trained using our end-to-end approach
were more dispersed in the feature space. This means that even when the signs were blurred, distinguishable spatial differences
can still be observed among different road signs. Therefore, fine-tuning training indeed improves the accuracy of road sign
recognition.
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Figure 6 Visualization results of t-SNE using existing model and fine-tuned model under different degrees of blur

The low accuracy of road sign recognition stems from several factors. Firstly, clear road signs undergo significant changes,
such as rotation, which hinders accuracy. Additionally, the network only performs fine-tuning, resulting in limited data, especially
for road signs with only numerical differences. This paper specifically focuses on using a pre-trained image classification model
for recognition instead of specific identification of similar road signs, leading to instances of misidentification. Our experiments
utilize the MobileNet-v2 as the training model, in line with the focus on road sign design. All discussions are based on the
MobileNet-v2 model. Improving the model structure aligns with the study's design, as a road sign system that facilitates
recognition would enhance accuracy. However, during the province-level contest of China Adolescents Science & Technology
Innovation Contest, many judges have highlighted the lack of generalization ability in solutions and conclusions derived from
training a single model. Therefore, to strengthen our arguments, we will provide experimental results using VGG16, ResNet50,
and Swin-Transformer models in the following cross-comparison.

3.3 Blurry Road Sign Recognition

To simulate road sign recognition in complex real-world scenarios, mainly to consider various types of deterioration operations,
the operator is denoted as O and multiple operations are combined together. In real-world complex scenarios, image blurring is
caused by interference. The interference we refer to includes motion blur, focus blur, low ambient light, low-resolution at long
distances, and image noise. Due to the continuous movement of the vehicle and the time before opening the shutter, objects that
are moving quickly will have traveled a certain distance, and their images will also have moved a distance on the film or image
sensor. When multiple images overlap, it leads to a blurry photograph.

For operation O, this paper uses four different algorithms to simulate four different types of blurring effects that are related to
four practical scenarios that may affect the accuracy of road sign recognition: motion blur caused by acceleration, low-resolution
caused by long distances, Gaussian blur caused by defocus, and high noise caused by low ambient light. Figure 7-a demonstrates
examples of two common road signs (speed limit sign and U-turn sign) and uses algorithm to simulate the images that a camera
may obtain in these situations.

For the four types of deterioration operations, each operation corresponds to a deterioration coefficient. In the case of motion
blur, the blur occurs within the range of positive and negative 10 degrees in the horizontal direction. The degree of deterioration is
represented by the size of the blur kernel ym. In the case of low-resolution, when the deterioration degree is yi, the output image
resolution is 40/y, < 40/y,. For Gaussian blur, the deterioration degree y, is used as the size of the Gaussian kernel. For adding
noise, Gaussian noise is used, and the generated Gaussian noise image is added to the original image with a deterioration degree
of yn.

o motion focus  image low-
original blur blur noise resolution
MINIMUM| |somsw | monimum
SPEED SPLED

60

60

60

0O

Figure 7-a Schematic diagram of

Figure 7-b Road sign capture



different damage simulations on highway

3.4 Impact of Blurred Road Signs on Recognition

As mentioned earlier, the accuracy of road sign recognition decreases gradually with increasing deterioration levels under various
blur conditions. In this study, we conducted experiments to validate this phenomenon. We applied motion blur to the images at
different degrees of blur ranging from 50 to 300. The recognition accuracy significantly decreased for both tasks using fixed
features and end-to-end trained models. Quantitative results of the accuracy degradation in both classification and detection tasks
under different degrees of blur are presented.
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Figure 8 Whether for end-to-end training or fixed features, there will be a severe drop in accuracy under blurry conditions, and the
performance of object detection will also suffer a severe decline.

It is evident that severe blur leads to substantial performance deterioration for both classification and detection tasks. Although
many existing methods aim to enhance performance by strengthening the network, it is important to note that these methods often
increase the inference time and do not conflict with the approach proposed in this paper. Therefore, they can be combined with
our method. Our objective is to find a more suitable road sign design solution that can improve accuracy under different blur
degrees without modifying the model or training approach. To the best of our knowledge, this is a novel problem that has been
rarely investigated in prior research.

4 Road Sign Design and Recognition

4.1 Address the Problem

As mentioned in section 1.2, we have transformed the problem of generating a set of easily recognizable road signs into a problem
of finding the ideal solution among KM combinations of road sign designs. In this case, we consider K=3 and M=55. The ideal
solution refers to a set of road sign design solutions that achieve the highest classification accuracy under the presence of
blurriness. Specifically, two alternative designs are provided for each road sign in the design process.

Clearly, the most accurate method would involve training and testing the road sign data for each selected design solution.
However, even with a simple linear classifier, this would require a significant amount of time. Therefore, we need to find an
algorithm that can: 1) quickly evaluate the accuracy of a road sign design solution, and 2) greatly reduce the search space of KM,
thereby minimizing the number of required searches.

Given the large number of potential design solutions for road signs, even in cases with a small number of road sign categories
such as M=10, there would be close to sixty thousand possibilities to validate. Conducting a search to find the highest accuracy
design solution for each category would be time-consuming. Hence, in this study, we choose to employ a simulated annealing
algorithm, a method suitable for searching optimal solutions within a large search space, to approximately obtain the ideal
solution.

4.2 Relationship Between Accuracy and Data Distribution in Feature Space

In this project, the features distinguishing road signs include the numbers on speed limit signs and the orientation of turn arrows
(as well as color and shape characteristics such as circular, triangular, blue, and yellow). The data points in the feature space
correspond to the digitized features of road sign images obtained through a neural network. Classification by the neural network is
based on these features. When there is an overlap in the feature point regions, the classifier may not be able to completely separate
them, leading to classification errors. The more overlap there is between the feature points of two road signs in the feature space,
the higher the error rate of classification.

Figure 9 provides a more intuitive illustration of this phenomenon. Let's assume there are three types of road signs, A, B, and
C, each with K=2 design solutions. The smaller the overlap between the designs of each type of road sign, the easier it is for the
machine to distinguish them, resulting in higher classification accuracy. However, if there is a larger overlap, it indicates that the
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designs of these solutions are more similar, and the machine is more likely to make confusions during classification. For example,
in Figure 9, solutions A2, C1, and B2 have a higher overlap, resulting in a lower classification accuracy. The machine cannot
determine whether it is recognizing Al or A2 because both designs share certain features. On the other hand, solutions Al, C2,
and B2 have no overlap, resulting in higher classification accuracy. The principle is the same for road sign design — it is essential
to aim for designs that have smaller overlaps in the feature space, which means higher distinctiveness. The fewer overlaps there
are, the more ideal the design solution.

The ideal solution aims for a higher accuracy in road sign classification, which reflects as increased distances between the
class centers of any two road sign categories in the feature space, and smaller overlapping areas between two circles. t-SNE
visualization can be employed here. After extracting features and visualizing them in the t-SNE feature space, we hope that the
new design solutions can maximize the proximity between candidate solutions for each road sign category, as greater distances
represent easier distinguishability among road signs.

® - =m
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Figure 9 Illustration of feature distribution

The current challenge lies in finding an optimal solution with maximized distances between class centroids using algorithms. It
is important to note that the extracted features for any image are of equal length and do not suffer from reduced feature numbers
caused by motion blur. Let y represent the extent of image degradation, where a smaller y indicates less image damage. When an
object image is subjected to noise or other interference, the extracted features will become blurred. Treating blur as interference,
this interference will cause greater variations in feature distributions among different road signs. If y increases, the interference on
the image's features also increases, causting the extracted features more different from the clear image features, or the center of
the circle, resulting in a lack of distinctiveness in the distribution of data points (feature points) in the feature space.

Simulated annealing is a general probabilistic algorithm used to find the optimal solution for a given proposition within a large
search space. The term "simulated annealing" comes from the metallurgy term "annealing". Annealing involves heating a material
and then cooling it at a specific rate to increase the volume of grains and reduce defects in the lattice. Originally, the atoms in the
material would settle in positions that minimize internal energy. Heating increases the energy, causing atoms to move away from
their original positions and randomly explore other positions. During the slow cooling of annealing, atoms have a higher chance of
finding positions with lower internal energy.

Simulated annealing simulates this physical process by defining an energy function E and continuously making small
modifications to the current state, accompanied by a gradual decrease in temperature T. Through random movements, the
algorithm gradually selects status with lower energy E, eventually finding the optimal solution. Taking road signs as an example
in this paper, as mentioned earlier, there are 3°3 different solutions. The simulated annealing algorithm randomly selects an initial
solution and continuously modifies the road sign arrangement while attempting to retain the better solutions. It continues to
explore based on these solutions. Although it may occasionally produce inferior solutions, with continuous attempts, the solutions
obtained through simulated annealing will gradually improve.

Simulated annealing requires evaluating the quality of a set of solutions. If accuracy is used as the evaluation criterion, it
would still require testing with a set of data, which is time-consuming. Therefore, an approximation of accuracy can be obtained
by measuring the distances between different classes in the feature space as an evaluation criterion.



4.3 Fitting the Relationship between Distance and Accuracy

Figure 10 Schematic diagram of distance d

The objective function of simulated annealing is the energy E. In this case, we want E to directly correspond to the classification
accuracy. First, we define the distance between images in the feature space (the distance between class centroids, as shown by the
arrows in Figure 10) as d. We design a formula to ensure that E and our class centroid distance d have a specific relationship: the
smaller the E, the larger the d. This allows us to approximate the relationship between accuracy and the distance d between all
classes.

To achieve a smaller error rate Pe, a larger d is preferred, while the energy E decreases during the cooling process of simulated
annealing. Therefore, we take E as the error rate P. Considering that d is a non-negative value, we let d be the denominator (as the

denominator increases and the numerator remains the same, the value will be smaller). The formula for the approximation is as
follows, where the error rate P, equals:

P. = a/d®. (1)
Here, a and b are the parameters to be fitted, and the fitting results are shown in Figure 11.
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Figure 11 Curve fitted to the relationship between distance and error rate
From the fitting results, we can determine that the energy E satisfies:

E= ,a/d (2
4.4 Implementation of Simulated Annealing

In the process of using simulated annealing algorithm to search for a reasonable solution, a sign in a combination of signboards
with energy E will be randomly changed, and obtain a new combination of signboards with energy Ei. We handle two scenarios as
follows: In the first scenario, if E; is less than or equal to E, we keep the combination of signboards corresponding to E; and
continue to randomly change the signboard selection. In the second scenario, if E; is greater than E, we select E; with a certain
probability, which is given by the probability formula P shown below.

It is worth noting that the definition of temperature is particularly important in the simulated annealing algorithm. If the
temperature is high, the machine will constantly try different strategies, including both good and bad ones. However, if the
temperature is low, the machine will always choose the strategy with the smallest E, leading to getting stuck in a partial minimum.
Therefore, we define a temperature T (which decreases over time) to avoid getting stuck in a partial minimum. The commonly
used formula in the simulated annealing algorithm is as follows:

P = o 0E/T

: (3)
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As time T decreases, P also decreases. In other words, as time goes by, the possibility of choosing Ei in the second scenario
becomes smaller. This means that the chance of conservatively choosing a good strategy increases, which allows us to keep trying
different strategies in the early stages and gradually select better strategies later on. This approach not only avoids getting stuck in
a local minimum, but also allows us to obtain better strategies than before.

4.5 Replacing distance estimation with fixed feature Learning Accuracy?

During model optimization, we adopted simulated annealing with only around 1000 iterations. Given a fixed feature training time
of 1 minute, this allowed the algorithm to produce results within a few hours. To further analyze the impact of accuracy estimation,
we supplemented experiments with models trained on fixed features. This directly yielded test accuracy, as reported in the
Experiments section.

5 Experiments

The experiments section is organized as follows: In section 5.1, we present preliminary results using MobileNet and a basic
simulated annealing algorithm, as well as compare the performance difference between using distance estimation and directly
using the end-to-end ground truth accuracy. In section 5.2, we address the issue of generalization ability raised by several judges
by providing cross-validation results for networks such as VGG and Swin-Transformer, demonstrating the universality of our
approach. Section 5.3 is a supplementary experiment to examine the impact of ambiguous directions on recognition accuracy and
sign design principles. In section 5.4, as most of the experiments focus on image classification, we include an additional
experiment on object detection to demonstrate the improved performance of our sign design in detection tasks. In section 5.5, we
attempt to use a sliding rail to capture more realistic data and further validate our approach.

5.1 Experiment

5.1.1 First Impression on Simulated Annealing
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Figure 12 Simulated annealing results

Among the 55 sign types, each sign had two alternative patterns, along with the original sign, forming three options. The center
points of each sign were extracted under clear conditions, and simulated annealing was used to find the optimal solution. The
distribution of all signs in the feature space was visualized in a two-dimensional plane using the t-SNE algorithm. As shown in the
left side of Figure 12(gray dots), some sign patterns were closer and formed clusters in the feature space. The energy E decreasing
process during the simulated annealing is shown on the right side of Figure 12. In the early stages of the simulated annealing,
when the temperature T was high, the energy E would rise significantly in neighboring cycles. As the temperature T decreased,
the probability P also decreased. As time increased, the probability of choosing the most recent step gradually decreased,
transitioning from an initial period of random attempts to a stable selection. Setting the temperature allowed for a buffer to find
better solutions and extended the time to search for a solution, resulting in a solution that was better than getting stuck in a partial
minimum from the beginning. The selected solution, visualized through t-SNE, is shown in the left side of Figure 12(red dots),
with each selected sign maintained a certain distance from others.

We further evaluated the accuracy of the sign combinations generated by the simulated annealing algorithm. The results for
the original signs, randomly selected sign combinations, and sign combinations selected using simulated annealing under different
degrees of blur are shown in Figure 4-a.

2 At the presentation for the province-level contest of China Adolescents Science & Technology Innovation Contest, one judge
pointed out the low number of iterations for our simulated annealing approach. We had only used around 1000 iterations due
to time constraints. The judge noted that within a limited timeframe (a few hours), we could still produce results by training
with fixed features, since each iteration only required 1 minute. Following this feedback, we supplemented additional
experiments by training models on fixed features, in order to directly evaluate test accuracy.
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Figure 4-a Recognition accuracy under different degrees of blur

The x-axis represents the degree of blur, while the y-axis represents the classification accuracy. The black line represents the
accuracy of the original images, the green line represents the accuracy of randomly selected blurred sign combinations, and the
red line represents the accuracy of sign combinations selected using the simulated annealing algorithm. Comparing the red line
with the black line, we can observe that after using simulated annealing, the classification accuracy of the sign combinations
significantly improved compared to the original solution, with an improvement of nearly 10%. As the degree of blur increased, the
accuracy rate increased by nearly 20%. Comparing the green line with the black line, we can see that the accuracy of the randomly
selected results is also lower than the results obtained from simulated annealing, indicating that simulated annealing effectively
provides a set of sign combinations that are easier to recognize. Through analysis, we can conclude that the new sign design has a
certain effect on improving accuracy, and the use of the simulated annealing algorithm is also crucial.

Examples of the two approaches are shown in Figure 4-b. The sign combinations generated by the new approach have higher
distinguishability and clearer boundaries under blurred conditions, leading to higher accuracy.

Accuracy rate 75.8%

Original \ m | = |

road sign @ @ m @ s D:.L(
Blurry

algorithm

selected

road sign Accuracy rate 82.5%

Figure 4-b The contrast of original road sign and algorithm selected road sign under degree of blur =100

The classification accuracy rate of algorithm selected road sign outperforms original road sign by 12% in average.

The classification accuracy of the original signs decreases significantly under conditions of motion blur and long-distance
observation, while the sign combinations designed by us reduce the impact of motion blur on sign recognition under the same
conditions, thereby improving classification accuracy. As shown in Figure 4-b, the final experimental results demonstrate that our
proposed traffic signs have a significant advantage in recognition rate under various blur conditions. In this experiment, Group A
consists of a set of existing signs, with degradation conditions including motion blur, focus blur, low environmental illumination,
low resolution at long distance, and image noise. After designing two road sign set, Group B is the optimal result selected from
the three sets (two designed sets and one original road sign set), with the same degradation conditions as Group A, and using the
same algorithm for traffic sign recognition. By measuring the average recognition accuracy rate of the two groups, we can see that
the recognition accuracy rate of the suggested traffic sign is 82.5%, significantly higher than the 75.8% of the original traffic signs.

5.1.2 Distance based Accuracy Estimation vs. Real Classifier Accuracy

As noted during presentation, training with fixed features requires approximately 1 minute per iteration. Thus, 1000 iterations
with simulated annealing is feasible within a day. We supplement experiments by training models using fixed MobileNet-v2
features, and compare our proposed distance-based accuracy estimation (Section 4.3) against using fixed features directly for
accuracy. The resulting accuracy vs. blur curves are highly similar, validating our proposed approach. While real iterative training
could provide greater accuracy, it incurs high cost (1000+ minutes). For an interactive system that guides traffic sign design via
optimization, this training time is prohibitive.

12
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Figure 13 Results of fixed feature training and simulated annealing

5.2 Generalization to More Models for Blurry Traffic Sign Recognition

Our initial experiments only evaluated MobileNet-v2 due to time limitations. As noted, our approach is classifier-dependent, i.e.
effectiveness on MobileNet may not transfer to other networks. We supplement additional experiments on Swin-Transformer,
ResNet50, and VGG16 to validate: 1) whether our method improves design accuracy across models, and 2) whether designs

optimized for one model improve others.

Modular ML frameworks allow easy switching between classifier architectures. Results show accuracy gains across models using
our method, indicating general effectiveness. Interestingly, designs optimized for one model still improve others, suggesting
features capture universal patterns. Detailed results are in the Experiments section.

net _mobe = get model( 'mobilenet-v2_ 8xb32_ inlk', '/content,
net swin = get model('swinv2-tiny-w8 3rdparty inlk-256px"’,
net res50 get model( 'resnetv1d50 8xb32 inlk', pretrainec
net _vgglé = get_model('vgglébn 8xb32 inlk', pretrained=Fal
Figure 14 Part of code of switch model

Model \r?zOblleNet_ Swin-Transform | ResNet50 VGGl6

slight blur, original road sign 97% 100% 91% 99%

slight blur, algorithm-selected 98% 100% 999, 100%

road sign

accuracy rate increase 1% 0% 8% 1%

severe blur, original road sign 69% 90% 78% 86%

severe blur, algorithm-selected 0% 97% 90% 90%

road sign

accuracy rate increase 11% 7% 12% 4%

Table 1 Result of accuracy rate of different classifier

For both slight blur (simulated degree of blur=150) and severe blur (simulated degree of blur=250), Swin Transformer
achieved the highest accuracy rate with the original design. However, with our proposed design, the accuracy improved

substantially for all classifiers, validating the effectiveness of our approach.

mobileNet-v2 Swin-Transform ResNet50 VGG16
mobileNet-v2 0.11 0.08 0.09 0.10
Swin-Transformer 0.08 0.07 0.08 0.08
ResNet50 0.12 0.13 0.12 0.14
VGG16 0.15 0.13 0.13 0.04

Table 2 Gain in recognition accuracy of other models after using different base models for design (post design accuracy - original

accuracy)
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We further conducted cross-validation by testing if design of model A improves model B. While the improvement is generally
largest for model A itself, it also works for other models. Interestingly, VGG16 only improved by 4% itself but provided larger
gains for other models. This may be due to randomness and does not affect the overall conclusion.

5.3 Control Variable Experiment for Sign Design Principles

Principle 1: Information should be distributed vertically rather than horizontally.

As the images of the signs are more likely to be subjected to horizontal blur when the car is in motion, such blur can harm the
accuracy of sign recognition. If the information is distributed more horizontally, i.e., the variance of the image in the x-direction is
larger, it is more prone to blur. Therefore, the information should be distributed vertically as much as possible, that is, the traffic
signs should have a larger variance in the y-direction, as the information in the vertical direction is less susceptible to motion blur.

clear blurry

- I ‘ m

horizontal :
——

Figure 15 Classification Accuracy under Vertical and Horizontal Information
To validate our findings, we conducted an experiment using images with information oriented either vertically (horizontal
stripes) or horizontally (vertical stripes). The classification accuracy was compared using fixed features. We introduced motion
blur to the original images, with the degree of blur randomly chosen between 50 and 300. It can be observed that the distribution
of horizontal stripes remains relatively clear even after blurring, while the vertical stripes become difficult to discern, resulting in
a significant difference in accuracy. The accuracy of horizontal stripes reaches 99.1%, whereas that of vertical stripes is only
58.5%.

Principle 2: Diversified Outer Contour of Road Signs

h (e

Accuracy rate=65.7% Accuracy rate=70.9% Accuracy rate=72.4%

Figure 16 Classification Accuracy under Varying Contour Richness
We present examples from our experiments using three different scenarios: fixed shape, existing road signs, and enhanced
outer contours. The accuracy of classification for existing road signs is 70.9%. When all outer contours of road signs are degraded
to squares, the accuracy drops to 65.7%. However, by using more diverse outer contours, the accuracy of road sign recognition
improves to 72.4%.

5.4 Verification of Experiments

Thus far, we have assumed the traffic signs are already localized and focused on classification accuracy.

14
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Figure 17 We paste the original and redesigned road signs into images for simulation testing experiments

To validate the impact on detection, we simulate detection experiments by overlaying original and redesigned signs onto real
images.

After the province-level contest, we conducted additional experiments on object detection using YOLO, as many students have
gained proficiency in this. We simulate detection by digitally adding existing and redesigned signs onto real background images
and ask collaborators with detection expertise to run experiments.

The results show our redesigned signs also moderately improve detection model performance. This is likely because our signs
have slightly higher visual diversity and salience compared to existing designs.

5.5 Preliminary Real-World Video Capture Experiments

- PO |

Figure 18 Data collection under the controlled rail system
We conduct preliminary real-world video capture experiments using a controlled rail system and small sign models to validate the
improved performance observed in simulations. Capturing real-world traffic signs from vehicles poses challenges - it is difficult to
quickly access traffic signs in the experiment, and self-designed signs cannot be erected roadside. Our rail system enables
reproducible capture approximating real conditions. As depicted in Figure 18, it comprises a driver, a motor, a belt track, a limiter,
and a console. We control the movement of the console by controlling the motor operation with a driver, which in turn drives the
belt track to rotate. The driver controls the direction and speed of operation, and with the help of the limiter, the operating range of
console can be limited.

The maximum speed is 1.5m/s. We use a speed of ~0.7m/s for capture. Since signs are scaled down ~30x, this corresponds to
21m/s or 75.6km/h in a real vehicle, typical of urban driving. We print original and optimized sign designs onto wooden models
for consistent capture.

Our procedure is: 1) Move the console via the controller. 2) Position sign models trackside. 3) Record video with a smartphone

fixed to the console. 4) Extract some frames from the shooting results and use an open-source model for road sign detection to
capture road sign images. 5) Compute recognition accuracy rate. Original signs have 78.6% accuracy rate, while our optimized
versions achieve 85.7%, validating improved recognizability.
For better presentation, we construct a headworn display box from surface notebook and cardboard (Figure 4-c) and simulate
motion blur programmatically. The specific implementation method is to obtain the current image and a series of images reduced
by different multiples, and cut out the common parts for stacking. After stacking, real-time images with motion blur effect can be
obtained under static conditions, and the difficulty of distinguishing different road signs under motion blur can be experienced by
the human eye. This conveys the perceptual difficulty under blur, though without modeling distance effects. The simulation
provides a visual sense of motion blur but does not correspond to a particular real-world speed and observation.
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6 Conclusion

We propose redesigned traffic signs with added features that are easy to recognize and hard to blur, improving recognition
accuracy in challenging conditions. Compared to electronic signs [9], our approach has advantages:First, electronic signs have
reliability risks from power and hardware failures that would deprive autonomous systems of critical information. Second,
digitization introduces vulnerabilities to network attacks, where humans cannot intuitively detect inconsistencies between
electronic and physical signs, exacerbating safety issues. Beyond accuracy gains [10,11], security is an important consideration
for digital sign design that we leave for future work. Nonetheless, our redesigned signs with more salient shapes and colors are
inherently more robust to recognize.

In summary, we establish design principles for recognizable signs, generate optimized combinations via simulated annealing,
and experimentally validate improved blur robustness over existing signs. This research has practical value for improving the
safety of assisted driving, particularly as autonomous technologies become widespread.

At the same time, this article actually raises a new class of questions, namely, can the design of a fixed classifier/classification
network be changed in an application to make classification easier to recognize. This article proposes the use of simulated
annealing and provides a preliminary solution, which has been applied in the field of road sign recognition and expanded to the
problem of animation avatar design. Such an algorithm that can design more discriminative categories may have broader
applications in the field of design. An end-to-end learnable approach could produce superior results. The cross-model
generalization suggests human effectiveness is worth investigating. Overall, the algorithmic category redesign capability may
have broad utility for design.
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Appendix: Application to Anime Character Design

Our algorithm is not limited to autonomous driving and can be applied to selecting a subsets from any candidate pool which has
relatively better classification accuracy rate. As an example, we apply it to anime character design using StyleGAN-generated
portraits.

Random selection Our algorithm

Figure 19 Random and algorithm selected portraits

Comparing the random (left) versus optimized (right) selection of 55 portraits from 165 candidates, our simulated annealing
approach visibly chooses more diverse faces. With visualization based on nearest neighbor in feature space, the left lacks variety
and contains many similar pairs. Thus, even in this very different domain of anime design, our algorithm successfully identifies a
subset with lower overlap, validating the general applicability.

We can see that our selection to have more facial feature diversity. In summary, while we focus on traffic signs, the algorithm
proposed provides a novel general solution for selecting maximally diverse subsets from candidate pools. The anime experiment
highlights the versatility beyond autonomous driving and suggests promise for creative applications like generative art.
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FERER S REBRESHEY, ZLAANNRAT , 2EEENERE , ARMNRITHBREMEBZRA T2RENE
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o gic) mobileNet-v2 Swin-Transform | ResNet50 VGG16
BRUEN  RBREAR 97% 100% 91% 99%
BRUEN , BRINER 98% 100% 99% 100%
HERERA 1% 0% 8% 1%
FEEN  REMAR 69% 90% 78% 86%
FEENY, BIWFR 80% 97% 90% 90%
HEHEREA 1% 7% 12% 4%

®1TEDRBNEBRER
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Transformer WEBERZHEN, BREARMNNARHTRIE , EORF[EBRGFAENREA. HBARRNNS
RETHRERITRIKBMN.

mobileNet-v2 Swin-Transform | ResNet50 VGG16
mobileNet-v2 0.11 0.08 0.09 0.10
Swin-Transformer 0.08 0.07 0.08 0.08
ResNet50 0.12 0.13 0.12 0.14
VGG16 0.15 0.13 0.13 0.04
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XEWNEGRRIT T - M RBRTHEARIE  FRAEEMEEAFTEN (AAFZK) , NESHELAEFEH (G
FE ) o UTRIEXBGRABEERERTOREBENLR , HPRA TR RERTHRRBRE , BHMRERE
HLER 50 £ 300 2B F. AAUBEIHEHMERAFZAND HERLBIEW A MAAZACLBEEE  #HBEREBE
EEMNEE, BARGAEBRIEET 99.1% , MAMFZLRE 58.5%.
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16 TRIEEFERE TH D REBY
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18 EERITHBHNNBRERE
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BRHE AT R

XBRIROT : OFNAANENBRRERNRELRD , RFINEEERESL ; OEABRMER , ERERHL—WN ,
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