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Abstract

Autonomous driving presents a captivating future application of Al. With the increasing accessi-
bility of Al software and hardware, we embarked on assembling an autonomous driving vehicle with
the help of online tutorials and open-source resources. Our objective was to explore the intriguing
applications of autonomous driving technology within the campus environment.

However, we discovered a limitation in our autonomous vehicle’s online mapping ability to rec-
ognize glass walls, a material extensively used as classroom partitions on our campus. Investigation
revealed that laser beams of the vehicle’s LiDAR system pass through transparent glass without ef-
fective reflection, resulting in collisions with glass walls under certain conditions. As much modern
architecture incorporates transparent glass materials, this issue hinders the application of autonomous
driving technology around these new environments. Therefore, in this research, we developed a train-
ing method for a machine vision Al model to detect transparent objects.

During the research process, we primarily addressed the following challenges:

* We developed an automatic mask-labeling data generation methodology and pipeline (In-
tegrated Pipeline of Stable Diffusion Inpainting with Grounded-SAM), which solves the
lack of image data needed for semantic segmentation tasks from any research area, allevi-
ates human manual work and lowers overall time consumption on creating datasets. With
our methodology, we effortlessly created Grounded-SAM Integrated Diffusion Inpainting
Dataset (Grounded-ID2), a real-world-simulating glass segmentation dataset.

* Proposed an improved Transfer learning-based Transformer for the Transparent Object Seg-
mentation model (Tran3-Vision) to overcome the performance losses trained with combined
datasets. Trans3-Vision performs better on the test data set from Trans10kv2 with a mIoU score
of 75.94, a 2.1% increase over other state-of-the-art models. Trans3-Vision utilized domain
adaption, an optimized training process of transfer learning, in association with Grounded-I1D2.

The Grounded-ID2 dataset proved a vital asset in improving the performance of Trans3-Vision. The
process introduced by Grounded-ID2 is not limited to glass and transparent object segmentation and
applies to all other areas where image masks are needed.

This project is made open-source on: https://github.com/PROMCRdog/Trans3-Vision and the Cur-
rent Grounded-ID2 Glass dataset is uploaded and will be updated on : Dropbox.

Keywords: Object Segmentation, Automatic Labeled Data Generation, Domain Adaption, Stable Diffu-
sion, Segment Anything, Image Inpainting, Vision Transformer
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Figure 1: The autonomous driving robotic car we built

1 Introduction

1.1 Background

We spent months researching the necessary equipment for our robotic car, shown in Fig[ll We
decided to use state-of-the-art hardware to explore at the forefront level. We wanted our car to achieve
modern-day autonomous driving like Teslas and other tech start-ups. After designing our car structure
and adapting our equipment into a single shell, we began our software development based on the open-
source ROS (Robot Operating System). Many resources are credited to the open-source community
surrounding the ROS development platform. Developed on the agilex robotics scout hardware platform,
the car is equipped with an Nvidia Jetson AGX Orin as the primary computing power. It uses a Robosense
Lidar sensor and a Hikonvision polarized camera. It is equipped with a GNSS locator, which is a precise
timer for the whole system. We used gmapping with our lidar sensors to generate an offline map in
real-time. From Fig. 2} we quickly realized that glass walls and panels are a huge problem for our
robotic car’s navigation. In the background of Fig[l] it is also evident how our school uses many glass
wall partitions, which poses this challenging task we aim to address in our paper.

To validate our observations, commercial self-driving cars are also unable to detect glass. We drove
a recently released Xpeng(/Mi8) G6 equipped with XNGP—the best autonomous driving system in
China—up to a glass door. As shown in Fig[3] there is no sign of any glass detection. The distance is

Figure 2: The car’s sensor outputs next to glass: gmapping (top right), lidar 3D-point-map (bottom right)



only measured by the equipped low-resolution ultrasonic sensors of the wall next to the glass door. Even
the best of the best autonomous driving systems can not detect glass.

In many domains, such as robotics, autonomous vehicles, and computer vision, the detection and
segmentation of transparent and semitransparent materials present significant challenges for scene un-
derstanding and object recognition. Specifically, autonomous vehicles from Roombas to Teslas all fail to
detect and model transparent surfaces. Transparent objects, such as glass surfaces, doors, and walls, are
omnipresent in our daily lives, serving practical and decorative purposes. However, their existence poses
critical problems for vision systems, impacting tasks such as depth prediction, instance segmentation,
robotic navigation, and drone tracking. Failure to detect and accurately segment glass surfaces can lead
to disastrous consequences, such as collisions and accidents. Unlike their opaque counterparts, transpar-
ent materials lack fixed patterns and exhibit complex dynamic appearances influenced by light-matter
interactions, object shapes, and background factors. The interactions of light waves with fine materials
give rise to reflection, refraction, and transmission effects, resulting in observations that are difficult to
model and fall outside the distribution of typical data. This poses a fundamental challenge for existing
scene understanding methods that heavily rely on texture-based cues. Current approaches for transparent
material detection and segmentation primarily leverage contextual information or boundary detection in
the RGB domain. However, the limited strength of cues in the RGB domain, caused by weak light-
material interactions, makes accurate segmentation of transparent objects problematic. Although some
research has explored richer representations of light-matter interactions, such as polarization, which re-
lies on expensive specialized sensors. These methods are often hard to maintain and add additional work,
limiting their practical applicability.

To address the detection and segmentation challenges posed by transparent materials, it is essential
to develop novel approaches considering these materials’ unique properties and behaviors. Leveraging
both low-level cues (e.g., color differences and reflection artifacts) and high-level contextual cues (e.g.,
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Figure 3: Xpeng(’Ml%) G6 Glass Door Visualization



object relationships) can enhance the accuracy and robustness of vision systems in detecting and seg-
menting glass surfaces and other transparent objects. Many datasets were explicitly created to solve this
problem, such as the GDD[1] and the Trans10k[2]. These datasets played a significant role in training
past methods of glass detection; however, multiple limitations still exist within these datasets, allowing
room for improvement in this aspect. For example, the Trans10k dataset consists of an imbalanced class
distribution among the glass objects, which may lead to the under-representation of particular objects.

This paper aims to provide an improved solution to the transparent object detection and segmentation
problem. First, we construct a novel Grounded-ID2 dataset that contains numerous Al-generated images
of glass surfaces from diverse scenes for glass segmentation purposes. By utilizing the effectiveness of
such AIGC (Artificial Intelligence Generated Content), we can create an infinite number of images with
accurate labels and masks to boost the performance of our proposed model.

In addition, we proposed an enhanced model, Trans3Vision, to complete the glass detection and
segmentation task. We integrate domain adaption methods into our segmentation model to boost the
performance on unfamiliar datasets while maintaining accuracy on familiar ones.

Our main contributions can be summarized as follows:

* We have created and published an Al-generated dataset specifically tailored for training au-
tonomous driving models in the presence of transparent walls. The approach, Grounded-ID2,
enables the generation of an unlimited number of specialized datasets, enriching the driving expe-
rience of autonomous driving algorithms.

* An improved model Trans3-Vision, utilizing DANN (Unsupervised Domain Adaptation by
Backpropagation), is employed to achieve domain adaptation between different datasets.
Recognizing the disparities between Al-generated and real-world, we propose the Trans3Vision
framework to enhance the adaptability and performance of our autonomous driving algorithms in
real-world environments.

The rest of the paper is organized as follows: Section 2 reviews the related works. Section 3 introduces
the Al-generated dataset for transparent wall detection. Section 4 explains the architecture of our Trans3-
Vision algorithm. Section 5 compares the experiment results. Finally, Section 6 concludes the paper.

2 Related Works

In this section, we review the current state-of-the-art methods of transparent object/surface detection,
classifying them based on the type of image used, including RGB image, RGB-Depth image, RGB-
Thermal image, and RGB-Polarization image.

2.1 Methods using RGB

Methods utilizing only an RGB image to detect transparent objects often rely on specific contextual
cues. These contextual cues may be classified into low-level cues (e.g., changes in the color hinting
boundaries, blurred images/specular highlights caused by reflection) and high-level cues (correlations
between many objects). Many successful methods take advantage of these cues to enhance the accuracy
of their models. For example, GDNet, the first computational method for glass detection proposed by
Mei et al.[1], uses a large-field contextual feature integration module to capture various contexts. Lin et



Table 1: Comparing Trans4Trans to other State-of-the-art models

Category IoUT

Method GFLOPs| ACCT mloU?T -

Background Shelf Jar/Tank Freezer Window Door Eyeglass Cup Wall Bowl Bottle Box
FPENet[6] 0.76 70.31 | 10.14 74.97 0.01 0.00 0.02 2.11 2.83 0.00 16.84 24.81 0.00 0.04 0.00
ESPNetv2[7] 0.83 73.03 | 1227 78.98 0.00 0.00 0.00 0.00 6.17 0.00 30.65 37.03 0.00 0.00 0.00
ContextNet[8] 0.87 86.75 | 46.69 89.86 2322  34.88 32.34 4424 4225 5036 6523 60.00 43.88 53.81 20.17
FastSCNNI[9] 1.01 88.05 | 51.93 90.64 3276 41.12 47.28 4747 4464 4899 67.88 63.80 55.08 58.86 24.65
DFANet[10] 1.02 85.15 | 4254 88.49 26.65 27.84 28.94 46.27 3947 33.06 58.87 59.45 4322 44.87 13.37
Enet[11] 2.09 71.67 8.50 79.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2225 0.00 0.00 0.00
DeepLabv3+MBv2[12] 2.62 88.39 | 54.16 89.95 31.79 4829 46.18 4139 4342 6197 6948 61.65 54.89 6347 37.36
HRNet_w18[13] 4.20 89.58 | 54.25 92.47 27.66  45.08 40.53 45.66 4500 68.05 7324 6486 52.85 62.52 33.02
HarDNet[14] 4.42 90.19 | 56.19 92.87 3462 4750 42.40 49.78  49.19 6233 7293 6832 58.14 65.33 30.90
DABNet[15] 5.18 7743 | 1527 81.19 0.00 0.09 0.00 4.10 10.49 0.00 36.18 42.83 0.00 830 0.00
LEDNet[16] 6.23 86.07 | 46.40 88.59 28.13  36.72 3245 43.77 3855 4151 6419 60.05 4240 53.12 27.29
Trans4Trans-T[2] 10.45 93.23 | 68.63 94.44 4839  61.89 61.86 61.14 5483 7360 83.03 7520 74.69 7526 59.19
ICNet[17] 10.64 78.23 | 23.39 83.29 2.96 491 9.33 19.24 1535 2411 4454 4149 758 2747 3.80
BiSeNet[18] 19.91 89.13 | 58.40 90.12 39.54 5371 50.90 4695 4468 6432 7286 63.57 6138 67.88 44.85
Trans4Trans-S[2] 19.92 94.57 | 74.15 95.60 57.05 71.18 70.21 6395 6125 81.67 8734 7852 7713 81.00 64.88
DenseASPP[19] 36.20 90.86 | 63.01 91.39 4241  60.93 64.75 4897 5140 6572 7564 6793 67.03 70.26 49.64
DeepLabv3+[20] 37.98 92.75 | 68.87 93.82 51.29  64.65 65.71 5526 57.19 77.06 81.89 72.64 70.81 77.44 58.63
FCNJ[21] 42.23 91.65 | 62.75 93.62 38.84  56.05 58.76 4691 50.74 8256 7871 68.78 57.87 73.66 46.54
OCNet[22] 43.31 92.03 | 66.31 93.12 41.47 6354 60.05 54.10 51.01 7957 8195 69.40 6844 7841 54.65
RefineNet[23] 44.56 87.99 | 58.18 90.63 30.62  53.17 55.95 4272 4659 7085 76.01 6291 57.05 70.34 41.32
Trans2Seg[4] 49.03 94.14 | 72.15 95.35 5343  67.82 64.20 59.64 60.56 88.52  86.67 7599 7398 8243 57.17
TransLab[24] 61.31 92.67 | 69.00 93.90 5436  64.48 65.14 5458 5772 7985 81.61 7282 69.63 77.50 56.43
DUNet[25] 123.69 90.67 | 59.01 93.07 3420 5095 54.96 43.19 4505 79.80 76.07 6529 5433 68.57 42.64
U-Net[26] 124.55 81.90 | 29.23 86.34 8.76 15.18 19.02 27.13 2473 1726 5340 4736 1197 3779 1.77
DANet[27] 198.00 92.70 | 68.81 93.69 47.69  66.05 70.18 53.01 56.15 77.73  82.89 7224 7218 77.87 56.06
PSPNet[28] 187.03 92.47 | 68.23 93.62 5033  64.24 70.19 51.51 5527 7927 8193 7195 6891 77.13 5443
Trans4Trans-M|[2] 34.38 95.01 | 75.14 96.08 55.81  71.46 69.25 65.16 6396 8384 88.21 80.29 76.33 83.09 68.09

al.[3] improved the model by adding a boundary feature extraction module and a glass reflection detect-
ing module. Xie et al.[4] introduce a transformer-based network Trans2Seg with transformer encoder-
decoder architecture. Zhang et al.[2]] propose a semantic segmentation architecture Trans4Trans, shown
in Table [I] that improves the architecture of Trans2Seg to achieve a better result. Lin et al.[5] present
GlassSemNet that correlates the occurrence of glass surfaces with other surrounding objects (e.g., ”"win-
dows” tend to occur with ”curtains”).

2.2 Methods using RGB-T

RGB-Thermal cameras contain infrared modules to detect thermal energy in addition to regular RGB
cameras. Glass segmentation methods using RGB and thermal images take advantage of a sophisticated
difference between visible light and thermal radiation. Glass seen in a daily environment is mostly
silicate-based, which transmits visible light at a high rate. On the other hand, thermal radiation with
wavelengths 8um - 12um cannot pass through silicate glass. Hence, glass surfaces invisible in RGB im-
ages will show in thermal images. This unique characteristic can greatly aid glass surface detection. Huo
et al.[29] used RGB-Thermal image pairs to train a glass segmentation model and achieved improved
results compared with previous methods.

2.3 Methods using RGB-D

RGB-D camera is a popular choice when it comes to robotic perception tasks. The extra depth
camera can provide per-pixel depth information that assists object segmentation. However, the depth
information acquired from transparent objects may be erroneous due to the violation of the Lambertian
assumption. In the Lambertian assumption, a surface is expected to be equally bright from all viewing

7



angles; however, transparent surfaces both refract and reflect light, leading to two types of error shown
in Fig. [ Type I errors occur when light passes through the transparent material and reflects back from
the background, causing an inaccurate depth estimation corresponding to the background depth. Type II
errors occur due to specular reflections on the transparent surface, leading to missing depth information.

Some methods aim to fix the incorrect depth information. For example, ClearGrasp, presented by
Sajjan et al.[30], uses surface normal/contact edge information and a global optimization algorithm
to eliminate and refill the inaccurate depth information caused by transparent objects. Other methods
take the presence of errors as a cue for glass surfaces. Lin et al.[31] propose a glass surface detection
model that includes a Depth-missing Aware Attention (DAA) Module considering missing depth (Type
IT errors) regions as possible glass surfaces.

Transparent e
Object .

Type I: L’ R Type Il
Background Depth " . Missing Depth
’ ~
4 N

’ ~
’ ~
.
. Table S

Figure 4: Illustration of Transparent Object Depth Errors

2.4 Methods using RGB-P

Polarization cameras are a particular type of camera that magnifies contrast between different polar-
ized angles of light while filtering undesired reflections. The two parameters, DoLP and AoLP, which
indicate the relative intensity and the orientation of the polarization axis, respectively, can be thought of
as the material’s intrinsic properties in that the polarized light is reflected. Therefore, the polarization
light observations can be incredibly informative during processes of transparent object segmentation.
Mei et al.[32] use such polarization methods as an additional cue along with the RGB image in their
proposed model (PGSNet) to perform glass segmentation.

The methods above using additional features (thermal, depth, polarization) other than only RGB
may have achieved reasonable results. Still, there are many disadvantages to these methods compared to
RGB-only detections. First, additional sensors typically require higher costs. From purchase to main-
tenance, these sensors remain inaccessible to most researchers and developers from purchase to mainte-
nance. Second, the non-portability and inconvenience of these sensors greatly limited their use in daily
settings. Third, the time and effort needed to build a complex dataset usually leads to decreased quan-
tity. Meanwhile, regular RGB datasets can be gathered more rapidly and even more efficiently
with synthetic data that can be prepared automatically. Considering all the factors, we used the
simplest RGB image as input data.

3 Dataset

In most computer vision object recognition and detection algorithms, there is a direct correlation
between the amount of data and the model’s performance. Glass segmentation and detection is a very
niche area of study in semantic segmentation tasks with little current research. Earlier datasets like
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GDDI[[1], proposed in 2020, only contained less than four thousand images. It mainly contained windows
and glass walls. The first version of Trans10k[33] was proposed in the same year, containing the most
comprehensive labeled data at 10,428 images of glass walls and other transparent objects. Still, only 5k
of those images were dedicated to training. In 2022, TransTouch proposed using Blender to create CGI
images on only small glass containers, which is more tailored to robotic arm applications, unlike indoor
navigation. These datasets all require lots of manual work during collection and labeling. Segmentation
tasks with more extensive datasets like the newly proposed SAM (Segment Anything)[34] contains 11
million images and over 1 billion masks. But even with a dataset of this scale, glass and transparent
objects take up a tiny proportion of the dataset, resulting in undesirable performance when used for
transparent object detection. Compared to segmentation datasets in other fields, current transparent
object and glass segmentation datasets only have a limited size of ten thousand images. This paper
introduces the Integrated Pipeline of Stable Diffusion Inpainting Dataset with Grounded-SAM shortened
as Grounded Integrated Diffusion Inpainting Dataset (Grounded-ID2) to address the issues of limited
data. Grounded-ID2 is partially displayed in Fig. [6]

3.1 Transparent Object 3D Rendering Using Omniverse and Blender

Manually collecting data and analyzing them is always tedious. Before we thought of using Al tech-
nology for dataset generation, we explored the path of 3D rendering to simulate real-world environments.
A dataset of 3D glass models. This dataset will be created by 3D modeling glass objects using Omniverse
Suit. This will allow us to create a dataset of glass images with more accurate geometry than existing
datasets. Omniverse Suit is a suite of tools for creating, editing and simulating 3D scenes. Blender is
part of the Omniverse USD suite of tools. Blender is known for its accurate physics simulations, which
allowed us to create 3D glass models with realistic geometry. Using Blender, a simulated dataset was
produced manually. High dynamic range images (HDRI) were used to represent the background and
lighting effects for the scenes shown in Fig. [5] The HDRI photo covers the entire area, offering a back-
drop and complete natural lighting from all angles. The surroundings cover both indoor and outdoor
environments.

Figure 5: 3D Rendered Scene using Blender
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We specifically included many glass walls and windows representative of a modern environment.
Each scene contained up to 10 unrelated items randomly distributed throughout, rotated, and scaled. 54
different materials were used to render the scene. Realistic complex textures, displacements, and other
characteristics representative of real-world environments are included.

However, generating these synthetic images was no easy task. It takes similar amounts of manpower
to build these 3D scenes. Every object has to be adjusted and placed manually by hand. The scene needs
to be designed first. Then, the materials needed are to be added accordingly. It is time-consuming and
inefficient, just like manually collecting real-world data and labeling them. Therefore, we implement an
automated method in the next section that can efficiently generate datasets for limitation scenarios.

3.2 Grounded-ID2: Grounded Integrated Diffusion Inpainting Dataset

The rise of AIGC (Artificial Intelligence Generated Content) has led to many use cases for the con-
tent generated. We thought of the limitation of datasets and the effectiveness and efficiencies of AIGC
and created Grounded-ID2. This dataset contains a method of infinite image generation with automatic
precise labeling, creating pixel-level accurate masks. Our method can relieve researchers from the te-
dious process of manual data collection and post-processing of labeling and mask creation. Saving tons
of time and energy, it helps all researchers in the field dedicate more time to improving their models. Our
method achieves this data generation process by using synthetic images and image segmentation tech-
niques to cut out an area of an image for inpainting specifically. Inpainting is the task of reconstructing
missing regions in an image, similar to image restoration. Stable Diffusion[35] enables high-quality in-
paintings while maintaining the realistic elements and reasonable conceptions of an image. This method
not only ensures the realistic looks of an image but also creates a mask simultaneously when the image
is cut using segmentation models. Therefore, as shown in Fig. [6] this paper published Grounded-1D2,
which comprised up to 20,000 (2,500 currently, with much more coming) pixel-accurate mask-labeled
images. The next part will introduce the pipeline of Grounded-ID2 and the principles of each module.

Class Rooms Meeting Rooms

+.""

Office Space Hallways

5 3 0 T 'I
. _P._ . % . - =

Figure 6: Part of the Grounded-ID2 Dataset (More can be found in the Appendix)
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Algorithm 1 Image Processing Pipeline

e e e e
AN AN~

—_—
A 0 R RS A AR e

Dependencies:
Import torch, PIL, cv2, numpy, o0s, sys
Imports: Import necessary modules and libraries
Load Models:
Load pre-trained models (Grounding DINO, SAM, Stable Diffusion)
Image Processing Loop:
for each image file in the directory do
Load the image from the specified directory
Detect objects within the image using Grounding DINO model
if objects are detected then
Segment the detected objects using the SAM
Apply inpainting to the segmented objects using the Stable Diffusion method
Save the original, mask, and inpainted images
Increment the file counter
end if

: end for
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3.2.1 Methods and Process Flow

First Input Backdrop Prompt " Input

Grounded-ID2 Process Stable Diffusion Grounding Dino SAM Stable Diffusion Inpainting

Prompt Bounding Box Input Inpainting Prompt Final Output
/

Figure 7: The Framework for Grounded-1D2 Pipeline

As shown in Fig. [7] our process takes a text input or a "Backdrop Prompt” to generate initial images
with Stable Diffusion [35]. Then, the images will be fed to Grounding Dino[36]] for object detection,
and a bounding box will be generated, used to localize the area for mask creation and inpainting. The
bounding box will be the input for SAM[34], which will output a desired pixel-accurate mask label.
The mask will be used as input for stable diffusion[35]] for inpainting, producing our desired data. This
methodology is not only applicable to this specific task of generating glass data. This methodology can
be generalized to any area of study because. Because current AIGC technologies are already compelling
enough to simulate real data, we can use this advantage and mature segmentation task to create masks and
labels for immature areas like glass segmentation. Our methodology uses AIGC with segmentation
technology to generate data that simulates the real world, performing segmentation on well-trained
objects to create labels for developing tasks.

3.2.2 Latent Diffusion

Current image generation models have evolved a long way. They can generate high-resolution images
realistic enough to pass the Turing Test. Most people cannot easily discern between Al-generated images
and actual photographs. This implies that these models are good enough to feed their generated images
back into the training process of Al models. We use the state-of-the-art model, Stable Diffusion[35]],
which utilizes latent diffusion models for performance-efficient high-resolution image synthesis. Latent
Diffusion Models are probabilistic models tailored to denoise variables with normal distribution to learn
the pattern in the data distribution. That is similar to learning a fixed reverse Markov Chain. It uses
a time-conditioned transformer based UNet[26] backbone built primarily with 2D convolutional layers,
focusing on the most relevant bits.

We used Stable Diffusion v1.4 to generate up to 20,000 images applicable to different scenarios
where transparent glass would appear indoors. Workspaces and meeting rooms are familiar places in
modern office buildings that all have glass windows, glass walls, and glass doors. The images generated
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Figure 8: Stable Diffusion Model. This diagram illustrates the inpainting process using Stable Diffusion to
generate images for our dataset. The input image first undergoes a diffusion process, making the image noisy.
Then, by adding the mask generated by SAM indicating the regions for inpainting and a conditioning prompt
limiting the texture, the noisy image is denoised and outputted as the generated image.

should not contain anything transparent or glass-related. There needs to be an area for a segmentation
model to be cut out and prepared for inpainting, as shown in Fig. [7] These images would then be fed to
a pre-trained Segment Anything model for segmentation. A pixel-accurate mask will be cut out, and the
blank area will be left for inpainting.

3.2.3 Grounding Dino

For a given (Image, Text) combination, grounding DINO[36] produces numerous pairs of object
boxes and noun phrases. Both object detection and REC (Referring expression comprehension) tasks can
be coordinated with the pipeline. It concatenates all category names as input texts for object detection
tasks in accordance with GLIP[37]. REC for each text input, a bounding box is necessary. The output
for the REC is the output object with the highest scores.
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Figure 9: DINO Model: takes Text and Image inputs with feature extraction and applies cross-attention
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The Dual-encoder, single-decoder design underlies grounding DINO. It has a cross-modality decoder
for box refining, a language-guided query selection module, an image backbone for extracting image fea-
tures, a text backbone for extracting text features, a feature enhancer for fusing image and text features,
and a feature enhancer. In Fig. [0] the general framework is shown.

Grounding Dino initially uses an image backbone and a text backbone to extract vanilla text features
and vanilla image features for each (Image, Text) combination. The two stock features are input into
a feature enhancer module for cross-modality feature fusion. After acquiring cross-modality text and
image features, we employ a language-guided query selection module to choose cross-modality queries
from picture features. These cross-modality queries will be passed into a cross-modality decoder, much
like the object queries in the majority of DETR-like models, to probe desired features from the two
modal features and update themselves. The final decoder layer’s output queries will be used to anticipate
object boxes and extract phrases that go with them.

The extracted features from images and texts are first fed into a self-attention layer separately. Then,
they are fed into two cross-attention layers of text-to-image and image-to-text, respectively, for cross-
modality feature fusion. This creates a feature-enhancing layer to prepare for language-guided query
selection. The final output query is then used for object bounding box extraction and description phrase
extraction.

3.2.4 Segment Anything

Segment Anything[34] is a promptable segmentation model proposed by Meta, trained on 11 million
images and over 1 billion masks. The image encoder uses an Masked Auto Encoder[38] pre-trained
Vision Transformer (ViT)[39]], shown in Fig. [10] efficiently used to process high-resolution image inputs.
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Down
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Mask Points Box  Text
Figure 10: Segment Anything Model (SAM) can take many different input prompts to create object masks
The prompt encoder in Fig. [I0] considers two sets of inputs: sparse inputs like points, boxes, texts,
and masks. For each prompt type, points and boxes are identified by positional encodings added with
learned embeddings. Free-form texts are represented with a directly implemented CLIP[40]. prompts

(i.e., masks) are embedded using convolutional layers and summed element by element with the image
embedding.

The mask decoder effectively converts the output token, prompt embeddings, and image embed-
ding into a mask. This design uses a dynamic mask prediction head after a modified Transformer de-
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coder block. Our updated decoder block employs prompt self-attention and cross-attention to update
all embeddings in two ways (prompt-to-image embedding and vice versa). The image embedding is
up-sampled after two blocks have been executed. An MLP calculates the mask foreground probability
at each image position after mapping the output token to a dynamic linear classifier.

The model also takes into account ambiguous prompts. The model will average numerous valid
masks into a single output when presented with one. In order to solve this, the model is modified
to anticipate numerous output masks for a single prompt (see Fig. 6). We discovered Most typical
scenarios can be addressed with three mask outputs (nested masks are frequently three deep: whole,
part, and subpart). During training, it backprops the least amount of loss over masks. The model predicts
a confidence score (i.e., predicted IoU) for each mask in order to rank them.

4 Trans3-Vision Model with DANN
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Figure 11: Our Trans3-Vision utilizes Backpropagation and Gradient Reversal Layers

In this part, we introduce Trans3-Vision, which is a DANN-based Transformer model that references
the structure of Trans4Trans[2]. To ensure model accuracy and generalization, we use the DANN[41]
method, the domain adaption allowed us to merge the real world and the generated world effectively.
It easily combines two data sets of different characteristics while promising performance. Importantly,
different features can be discovered from different datasets. This keeps Trans3-Vision lightweight while
making it robust enough to avoid overfitting when tested in real-world situations. Our Trans3-Vision
model is entirely made up of transformers and attention layers. This contrasts the ViT[39] transformer
model, which has the advantage of gaining long-range dependencies. Shown in the middle of Fig. [T}
The four-stage encoder is a PVT[42] adaptation. Furthermore, the transformer-based decoder is more
reliable in parsing unforeseen data collected in the wild than CNN-based models that learn the inductive
bias. However, a sizable dataset is needed to train a transformer model and we want to improve the
generalization performance of our model. That is why we needed Grounded-ID2.
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4.1 Vision Transformer Based Transparent Object Segmentation Backbone

Trans4Trans is the current top-performing model on the Trans10Kv2 dataset. As shown in Fig.
it consists of shared encoders and dual decoders. Heavily inspired by the ViT [39] transformer model,
Trans4Trans’s dual-head model is constructed solely with transformers. It constructed an efficient de-
coder shown in Fig. [12]c) using TPMs (Transformer Parsing Module) that contain only one attention
layer, demanding fewer resources. The features Fi,F,, F3, F4 from Fig. [[2(a) are parsed by TPM mod-
ules. The features will be resized between stages and addition will be performed for feature synthesis. It
uses 64 as the default channel number and sets the resolution of TPM to IZ{ X % x C.

We take inspiration from the Trans4Trans[2] model and ViT[39] transformer to develop our own
Trans3-Vision with domain adaption.
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Figure 12: The Trans4Trans model architecture[2)]

4.2 Implementing DANN (Unsupervised Domain Adaptation by Backpropaga-
tion)

DANN[41] (Domain Adaptation Neural Network) assumes that the model operates with input sam-
ples x € X, where X denotes some input space, and with specific labels (output) y drawn from the label
space Y. In the following context, it considers classification problems where Y constitutes a finite set
(Y ={1,2,...,L}). Nevertheless, it is important to note that DANN’s methodology exhibits generality
and can accommodate any output label space that other deep feed-forward models can handle.

Additionally, it makes the assumption that two distributions, S(x,y) and T'(x,y), exist on X ® Y.
These distributions are commonly referred to as the source distribution and the target distribution (or
the source domain and the target domain). Both of these distributions are characterized as intricate and
remain unknown. Moreover, they exhibit similarity but distinctiveness, implying that S experiences a
certain domain shift about 7'.

The ultimate objective is to predict labels y based on input x for the target distribution. During the
training phase, it has access to a substantial set of training samples denoted as {xj,xy,...,xy} originating
from both the source and target domains, following marginal distributions S(x) and 7'(x), respectively.
To distinguish between the two domains, it employs binary variables d; (referred to as domain labels)
for each example. These variables indicate whether x; originates from the source distribution (x; ~ S(x)
if d; = 0) or from the target distribution (x; ~ T (x) if d; = 1). For instances derived from the source
distribution (d; = 0), it possesses knowledge of the corresponding labels y; € Y during the training phase.
Conversely, we lack label information during training for instances arising from the target domains and
aim to predict these labels during testing.

During training with Trans3-Vision, the network takes as input the source domain dataset with image
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classification labels and the target domain dataset without image classification labels, as well as domain
classification labels for both source and target domain data. In other words, the source domain dataset
has information about image classification labels, but the target domain dataset does not.

S Experiments

5.1 Experiment Environment

We implement Grounded-ID2 with Python 3.9, PyTorch 2.0.1, Cuda 11.7, and cudnn 8.5. The exper-
iment was conducted on a rented server equipped with an Intel Zeon Gold 5218R CPU with dual Quadro
RTX 6000 GPUs and 128GB of RAM. We use these environments to test and train our Trans3-Vision
model and Grounded-ID2 pipeline. The tran3-Vision model will be deployed on an Nvidia Jetson AGX
Orin developer platform.

5.2 Evaluation Metrics

To quantitatively evaluate the performance of the proposed model, we adopted two metrics com-
monly used in image segmentation fields. The first metric, Intersection over Union (IoU) = %,
measures the amount of overlap between two bounding boxes—a predicted bounding box and a ground
truth bounding box. It is calculated by the ratio of the intersection of the two boxes’ areas to their com-
bined areas. The second metric, Pixel Accuracy (ACC), represents the number of correctly predicted
pixels, compared to the total number of predicted pixels. For both metrics, the higher their value, the

better the results are.

5.3 Experiment Methodology

To measure the effectiveness of our generated data, we first created a baseline by
evaluating Trans4Trans[2] on the state-of-the-art Trans10kv2 [33]] test dataset. The @ @ o \

baseline will be used to set a standard and compare all other test results. An experi- e Oes

ment is performed on our generated Grounded-ID2 without any training adjustments —
or tuning. Then, we implement Grounded-ID2 directly into the training of the model. | @« [ P
We compare the model results when only trained on the Trans10Kv2 dataset and the (@) e
results when our augmented training data is added to the pool. We experimented with | @ @ s

how different proportions of our data and Trans10Kv2 data could affect the results. Figure 13:
We further perform real-world tests by capturing real-world scenarios with an RGB Trans]OKv2

camera. Color Palette
5.3.1 Evaluating Trans4Trans on the Trans10Kv2 Dataset Only

This section presents the test results to evaluate previous SOTA (state-of-the-art) model’s perfor-
mance on the Trans10Kv2 test dataset and the real-world dataset we collected. Even though the pre-
vious SOTA models like Trans4Trans achieved excellent results (see Table [2]) on the Trans10Kv2
test dataset, we can see from Fig[I5| that the real-world performance is not ideal, making incor-
rect segmentation in many areas. The results imply that Trans4Trans lacks generalization and is not
robust against different scenarios and applications. This might be because of how most image on the
Trans10Kv2 dataset looks. From Fig[I4]’s visualization, we can see that most glass regions have high
contrast borders, which may greatly influence test results. These high contrast borders are formed by
low light to bright light environments or just an effect due to different colored paint.
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Figure 15: Results on our real-world data

Table 2] shows the IoU score obtained using the Trans4Trans model on the different categories of the
Trans10kv2 dataset. We can see the model has a varying performance from 55% mloU to 86% mloU on
glass object segmentation from different Trans10kv2 categories. The average mloU score is 74.586%.
These scores are used as a baseline for further improvements and comparisons.

5.3.2 Evaluating Trans4Trans on Grounded-ID2 without Training

Now, we test to see how Trans4trans performs without training with any of the Grounded-ID2 data
on the Grounded-ID2 test dataset. Fig. [I6]and Table 3] show that performance drops significantly. From
Fig. [16] we can see that the first image had an incorrect segmentation while others are either incomplete
or unconfident, and some even detected the wrong category. This again proves previous SOTA models
like Trans4Trans have very bad generalizations and robustness.

To address this problem, we combine our Grounded-ID2 dataset with the Trans10Kv2 dataset to
train the model. This will allow the model to learn from more scenarios and aim to improve overall
generalization and robustness.

Table 3] is evident that only training on the Trans10kv2 does not allow the model to perform ideally
Table 2: The Baseline result on Trans10K v2 datasets

Class Name Background [0] Shelf [1] Jar or Tank [2] Freezer [3] Window [4]
ToU (%) 96.01 55.74 70.79 68.30 63.62
Class Name  Glass Door [5] Eyeglass [6] Cup [7] Floor Glass [8] Glass Bow [9]
ToU (%) 63.50 83.10 86.76 79.92 74.79
Class Name Water Bottle [10] Storage Box [11] Total PixAcc 94.88
ToU (%) 83.67 68.84 Mean ' mloU 7459
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Figure 16: Results on our Grounded-ID2 without training
Table 3: Comparison of baseline performance with initial performance on Grounded-ID2 dataset

Class ID Class Name Grounded-ID2 IoU (%) Trans10kv2 IoU (%)
0 Background 86.58 96.01
4 Window 0.64 63.62
5 Glass Door 43.43 63.50
8 Floor Glass 30.07 79.92
11 Storage Box 4.26 68.84
- Average 32.57 75.76

on the proposed Grounded-ID2 dataset. These results show that if the proposed model represents the
real world, then Grounded-ID2 is undoubtedly a great asset to existing glass segmentation datasets. To
confirm how representative of real-world environments Grounded-ID2 is, an experiment is conducted
for the performance of the model after training with Grounded-1D?2.

5.3.3 Training with Grounded-ID2 and Trans10Kv2 Combined

For this experiment, we experiment with different datasets constructed of different proportions from
Grounded-ID2 and Trans10Kv2. The training process is shown in Tabel 4] and Fig. First, we only
train our model (The green line ”1to0” on Fig. [I7]) on grounded-ID2 and evaluate its performance,

Loss
[0 2to5 O 1to@ 0O 5to5 2to501d

Figure 17: Training Loss of different datasets with different proportions
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resulting in a lackluster result of 49% mloU, which is still a 55% increase in mloU score over the
baseline. This presents room for improvement in our future research. Our current dataset is only meant
to be a handy asset but cannot be used solely on its own. Second, Grounded-ID2 is downsampled
to match the 1 to 5 ratio. There is a minor increase on our test set, but it also dropped more on the
Trans10Kv2 test set. The performance on the Grounded-ID2 test is able to increase because it trained
on a larger dataset with a wider range of data. However, we see a dramatic decrease for the Trans10Kv2
test set compared to the baseline. This is reasonable because they had higher performance metrics but
they have poor generalization and robustness against new scenarios. There’s the likelihood of overfitting
on the Trans10Kv2 dataset, causing any introduction of new data to break the line.

With further experiments, the 2 to 5 ratio has the best results, but it is still not ideal for real appli-
cations. To improve this problem, we used a solution of domain adaption introduced in section (Sec
4.1).

Table 4: Training the model with different proportions of Grounded-ID2 to Trans10Kv2

Data Proportion Dataset Background Window Glass Door Floor Glass Storage Box Average

Baseline Grounded-ID2 86.58 0.64 43.43 30.07 4.26 33.00
Trans10kv2 96.01 63.62 63.50 79.92 68.84 74.38

Grounded-1D2 88.79 13.87 70.69 43.21 30.19 49.35

1100 Trans10kv2 86.24 37.01 30.18 50.85 9.78 42.81
e Grounded-ID2 90.35 16.62 77.52 46.69 21.74 50.58
Trans10kv2 85.99 36.01 29.93 50.32 6.12 41.67

9105 Grounded-ID2 91.85 9.66 78.39 54.99 40.67 55.11
Trans10kv2 85.62 36.45 31.53 52.76 12.16 43.70

5t05 Grounded-ID2 91.54 9.41 77.70 55.86 33.72 53.65
Trans10kv2 85.79 37.01 32.13 51.52 11.02 43.49

5.3.4 Training Tran3-Vision with DANN Implemented

Here, we present Trans3-Vision results after implementing DANN[41]. The top section of Fig. [I§]
shows visualizations from our collected real-world data. The 4th picture from the left on the first row
exemplifies great performance under complex light conditions. The right-most image shows how Trans3-
Vision deals with double layers of glass. There’s a glass partition close to the POV (Point of View) on the
right of the image and glass sections at the further end. This image shows Trans3-Vision’s understanding
of dimension in the image and was able to correctly segment glass panes close up and in low light
conditions. From the Trans10Kv2 test set in the middle of Fig. we can see improved categorization
and segmentation accuracy performance. Our Grounded-ID2 test dataset displays similar performance
as the other datasets.
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Figure 18: Trans3-Vision results between all three datasets

In addition to result visualizations, we see in Table [5] there’s a drastic improvement in performance
for both models. We used the best data proportions of 2 to 5 to train Trans3-Vision. Our solution
effectively addresses the problem of overfitting to an unbalanced dataset of heavy-weight generated data.
Results on Table [3 show a 2.1% increase over the baseline Trans10Kv2 test set and a 69.8% increase

over the baseline of our Grounded-ID?2 test set.
Table 5: Trans3-Vision Results

Data Proportion Dataset Background Window Glass Door Floor Glass Storage Box Average
. Grounded-ID2 86.58 0.64 43.43 30.07 4.26 33.00
Baseline
Trans10kv2 96.01 63.62 63.50 79.92 68.84 74.38
Grounded-ID2 91.97 13.23 77.14 55.68 42.16 56.04 (+69.8%)

Trans3-Vision
Trans10kv2 96.03 65.51 67.17 83.02 67.98 75.94 (+2.1%)

5.3.5 Disrupting the Data Pool to Improve Performance

Another method we tried is to disrupt the data pool, involving the addition of irrelevant or noisy
data, to improve training results in machine learning. We added invalid images containing no glass or
irrelevant objects. We hope models will become more robust by intentionally introducing variability
and noise, reducing the risk of overfitting. However, no sign of improvement was shown after much
experimentation with this method.
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6 Conclusion

This project originated from the endeavor to build an autonomous driving vehicle on our campus,
with the aim of addressing the challenge of transparent object recognition. Throughout the research,
several key findings and developments have emerged:

Al-Assisted Dataset Generation: To overcome the scarcity of available datasets, We ultimately
developed Grounded-ID2, an automatic pixel-accurate data generation pipeline applicable not only to
glass detection. This approach proved effective in augmenting the dataset and overcoming the limitations
of manual data collection.

Trans3-Vision Neural Network: In order to bridge the gap between virtual training environments
and real-world applications, we designed the Trans3-Vision neural network, improving our training
methods and achieving ideal results performing on real-world data with a 2.1% mloU score increase
compared to other state-of-the-art models. This transfer learning model facilitates a seamless transition
of autonomous vehicles from virtual environments to real-world situations, enhancing their generaliza-
tion performance.

Overall, this research highlights the significance of Al-assisted dataset generation and transfer learn-
ing approaches in addressing the challenges associated with transparent object recognition in autonomous
driving. Moving forward, our future plans entail evaluating the vehicle’s performance in various chal-
lenging environments and assessing its ability to adapt to different circumstances. The findings empha-
size the positive impact of Al-generated datasets on training neural networks to handle complex scenarios
effectively. We have already open-sourced our dataset and will continuously improve the Al-generated
datasets and their alignment with real-world scenarios.
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Appendix: Visualization of Grounded-ID2

)

Bl i T
!

Classroom

Figure 19: The Hallway and Classroom classes from Grounded-1D2
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Living Room

Figure 20: The Conference Room and Living Room classes from Grounded-1D2
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Figure 21: The Office and Room with Glass Door classes from Grounded-1D2
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