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论文题目：对抗环境下多无人机的数据采集路径规划算法 (Multi-
UAVs Path Planning for Data Harvesting in Adversarial Scenarios) 
作者：周城锴(Zhou, Chengkai) 
论文摘要：两年前，我和父母一起在海南旅行时，第一次亲自尝试

了操作无人机飞行。我发现虽然无人机能够全景拍照、自动降落，

带给我更多平时无法触及的视野，但是，让无人机高空徘徊、绕开

障碍却非常困难，这些困难极大影响了我的操作体验。此后，我便

对如何让无人机智能地避开障碍、完成各种任务产生了浓厚的兴趣。

在经常关注无人机应用的相关新闻后，我意识到我操作无人机时遇

到的问题，在军事、救灾等场景下同样具有重要意义。  
去年冬天，我有幸入选了中国科协和教育部共同组织实施的中

学生“英才计划”，进入高校参加科研训练，并和指导老师讨论了

我关于无人机的思考。在学习过程中，我了解到无人机在学术界被

称为“Unmanned Aerial Vehicle”，大量的工作聚焦于如何让无人机群
从城市、森林等区域采集数据信息，通过无人机群的路径规划，使

其躲避障碍、防止碰撞，在采集信息后返回着陆区域，这些方法也

解答了我长久的疑问。同时，我产生了新的疑问，在战场等对抗环

境下，这些方法是否仍然有效呢。我尝试验证自己的想法，通过模

拟对抗情况，让敌人可以设置陷阱来捕获我方无人机，结果表明现

有方法无法让无人机绕开陷阱进行信息收集。 
在和老师进行深入讨论后，我设计了对抗环境下的多无人机路

径规划方法。整个方法基于强化学习框架，我定义了其中的状态空

间和奖励函数，并且设计了安全通信方法，应对敌人设置的陷阱诱

捕和信息窃听两种威胁方式。整个框架采用DDQN进行训练，并且
考虑到了人在回路的无人机控制方式。根据测试结果分析，我设计

的方法能够在对抗环境中安全、全面的采集数据信息，并返回着陆

区，相较于对比方法，数据采集覆盖率和安全返航率提升超过 60%。 
关键词：无人机协同，无人机路径规划，深度强化学习，对抗任务

环境 
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Abstract—In recent years, unmanned aerial vehicles (UAVs)

have been widely utilized for data harvesting in scenarios where

reliable communication infrastructure is absent. Among existing

solutions, deep Q-network (DQN) models have been extensively

applied for multi-UAV path planning owing to its superiority

in representing the surrounding environment and action space

for UAVs. However, the specific designs for UAV path planning

in non-cooperative and adversarial environment is still seldom

mentioned. This fact has reduced the performance for multi-

UAV data collection in harsh environment and tasks, like the

rescue in disaster area and the investigation in conflicting regions.

Therefore, this paper introduces a novel DQN framework named

MPDA addressing the critical issues in adversarial environments.

First, I assume and formulate the existence of trapping and eaves-

dropping attacks in monitoring regions. Second, a novel Deep Q-

learning model is designed which encodes the surrounding threats

into the state space and Q-networks, by combining them with the

battery capacity, the safe flying distance among UAVs and the

volume of collected data. Besides, a novel reward function is also

designed to further refine the action series of UAVs for better

data coverage among devices and safety landing. Third, I design

a Shamir threshold method based mechanism for secure infor-

mation sharing between IoT devices and UAVs. Finally, extensive

simulation results have demonstrated the advanced performance

for multi-UAV data collection in adversarial environment, which

outperform baseline method by 60% on multiple metrics.

Index Terms—Multi UAVs, Path planning, Deep Q-learning,

Adversarial environment

I. BACKGROUND

Due to their efficiency, flexibility, and low resource con-
sumption [1], grouped Unmanned Aerial Vehicles (UAVs)
form a promising approach for information harvesting within
regions where infrastructure and stable network connection
are unavailable [2] [3] [4]. UAVs are deployed to carry out
diverse tasks including real-time identification and localiza-
tion, sustainable urban-scale sensing of targets in surrounding
area, and application-aware content and network optimization.
Moreover, the extensive operation of grouped UAVs also
demonstrates that appropriate collaboration strategies could
improve overall mission execution; flying a swarm/group of
UAVs supports the cooperation ability between UAVs by
sharing important information, which assists in finishing the
given tasks easier and faster, even in a much harsher and more
complicated environment.

Recently, the main stream of research in grouped UAV task
planning concentrates on the adoption of the reinforcement
learning technique in various circumstances. Among these
attempts, the Deep Q-learning (DQN) based methods have

achieved advanced performance. The deep neural networks
in DQN models provides superior capabilities in represent-
ing high-dimensional state spaces for capturing elements in
monitoring area, while the Q-learning mechanism could derive
sophisticated strategies and make decisions from previous
actions. Both features have enhanced the overall task exe-
cution and collaboration among UAVs. For example, Zeng
et al. studied a DQN-based solution realizing simultaneous
UAV navigation and radio mapping in 3D space. The pro-
posed model implemented a dueling deep DQN algorithm
based on Markov decision process (MDP) [5]. Walker et al.
proposed a deep reinforcement learning (DRL) framework
for autonomous UAV indoor navigation based on partially
observable Markov decision process (POMDP) [6]. Bayerlein
et al. introduced a benchmark DQN approach based on the
decentralized partially observable Markov decision process
(Dec-POMDP) to work out multi-UAVs path planning strategy
in random dense urban environments [7].

Despite their remarkable achievements, most of current
DQN models for UAV planning are still constrained in han-
dling the mission process in non-cooperative and competing
scenarios. This kind of situation is somehow common and
pivotal as UAVs are more frequently applied for challenging
tasks like investigation in battlefields or disaster area. In these
scenarios, some adversaries and rivals may exist in the moni-
toring area, like the enemies from non-cooperative parties and
the uncertain dangers in the disaster area. The adversaries try
to interrupt the normal mission process of UAVs. Specifically,
they may raise two types of threats. First, they can conduct
eavesdropping attacks by deploying malicious UAVs cruising
in the area. These UAVs can steal sensing data by overhearing
the communication channels between UAVs and the sensing
devices. Second, normal UAVs are also in danger of being
captured or destroyed when adversaries set some traps within
the task area, which is denoted as trapping attacks. Both
attacking models cloud bring severe threats to the execution
of data collection tasks and the retaining of UAVs.

Therefore, I study the problem of multi-UAV cooperation in
an antagonistic mission environment with both eavesdropping
and trapping attacks. In this case, I need to consider the
power capacity of UAVs, the complicated environment, and
the potential threats from enemies. Initially, the data collector
would deploy some IoT devices in the non-cooperative area to
monitor and collect information about the surroundings. Then
a group of UAVs will be released to collect data from IoT
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devices in the antagonistic region and try to land back to the
starting area. The path planning for UAVs should be properly
derived such that the total data volumes and the coverage of
IoT devices and both guaranteed, while the UAVs are protected
against both attacks.

According to the problem formulation, I propose a novel
DQN model for multi-UAVs path planning in an adversarial
scenario to address these issues. I formulate the problem by
transforming a complicated environment into a grid world
and various kinds of regions into different sets of cell grids
marked by different labels. Then, I propose a DQN model that
can derive the action plans for UAVs in distributed manners,
aiming to simplify the problem and lower the computation
load. I design a novel state space consisting of the physical
space, the adversarial space representing the adversarial attack,
and the return space representing the corresponding values of
collecting data from different devices. I follow the typical
mapping strategies to generate the Q-network. Further, the
reward function is improved via inserting penalties when
UAVs are captured by traps or continuously collect data from
few IoT devices. In this way, the model could facilitate UAVs
to bypass traps and collect data from distinct devices. Finally, I
also design a multi-round Shamir secret-sharing mechanism to
secure the message against eavesdropping UAVs. Simulation
results suggest that our model can excellently handle the dif-
ficulties within the mission of collecting data under the threat
of enemy attack and significantly boost the return success rate
(RSR). The main contribution of this work includes:

• A novel system model for multi-UAV path planning
in non-cooperative environment is constructed. The for-
mulated model includes the eavesdropping and trapping
attacks, which are essential for the design of secure and
appropriate solutions.

• A DDQN-based model for multi-UAVs path planning in
an adversarial scenario is designed to derive the optimal
movement plans, where novel state spaces and reward
functions are studied to enhance the resistance against
trapping attacks as well as improve the data coverage
among IoT devices.

• A distributed multi-round data sharing strategy is pro-
posed for secure data collection against eavesdropping
attacks. The strategy is based on Shamir threshold method
and guarantees the original data would hardly be ob-
tained.

• Extensive numerical results are introduced and my
method performs better in adversarial environments than
baseline models.

The organization of this paper is as follow. Section II
briefly reviews existing solutions on Multi-UAV path plan-
ning. Section III introduces the validation and observation
on applying the baseline model to adversarial environment.
Section IV introduces the proposed reinforcement learning
model. Section V gives the implementation of the model, and
section VI introduces the evaluation results. Finally, section
VII concludes the whole paper.

II. RELATED WORK

A. Reinforcement Learning

Reinforcement learning (RL) is widely used in tasks where
interaction with the real environment exists, especially the
UAV path planning task. The main idea that is the UAV’s
actions interact with the environment to obtain Reward and
state changes, so that the local model learns the environ-
ment properties and selects the optimal action strategy for
the UAV. Pham et al. proposed a Q-learning algorithm [8]
for autonomous UAV navigation. The work let Q-learning
control the proportional Cintegral Cderivative (PID) controller
parameters willing to improve the navigation performance of
UAV in a 2D indoor space. Considering convergence, in their
subsequent work, the Q-learning with function approximation
based on fixed sparse representation (FSR) and a model termed
the honey badger algorithm (HBA) were integrated.

Since then, the optimization of various aspects of RL meth-
ods for UAV missions has become a hot research topic. In [9],
Hu et al. investigated optimization, premature convergence,
and the traditional HBA feasible and efficient paths issues.
This work proposed SaCHBA-PDN to sort out the above
issues by the Bernoulli shift map, piece-wise optimal de-
creasing neighborhood, and horizontal crossing with strategy
adaptation. Xu et al. proposed RL-based model to realize
a more effective path planning method [1]. They integrated
the comprehensive learning [10] (CLPSO) algorithm with the
dynamic multi-swarm PSO (DMSPSO) algorithm denoted as
CL-DMSPSO. Poudel et al. proposed an actor-critic multi-
agent RL model for multi-UAVs operations [11]. They also
proposed a priority-aware task assignment and path planning
(AMTP) algorithm, which surpassed recent methods in many
aspects. Liu et al. investigated the computation offloading
problem (COP) [12]. The suggested solution was based on
multi-objective MDP and their Q-network structure combined
Double Deep Q Network (DDQN) with Dueling Deep Q Net-
work (Dueling DQN) to improve the optimization efficiency.

While the aforementioned works are excellent contributions
to the optimization of the methodology, they are all based on
idealized discourse assumptions about the real environment.
These methods lack consideration of the adversarial environ-
ment.

B. Attacker Model

It is important for UAVs to have the ability to combat
risky environments in the course of their missions. In the
military, for example, UAVs attempting to collect data from
IoT devices may be able to capture or eavesdrop on the private
data collected.

Existing work, researchers have proposed some real risks
and solutions. For the information security (IS), [13] assumed
UAVs could be protected from eavesdropping by sending
interference signals to ground eavesdroppers. Thus, a multi-
UAVs RL method based on multi-agent depth deterministic
strategy gradient (MADDPG) have been proposed where the
safety capacity maximized by jointly optimizing the UAV
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jammer, trajectory, and launcher’s respective power. A proof-
of-stake (PoS) blockchain-secured UAV-IoT data collection
method is suggested by [14]. The model is based on generating
blocks from the collected data and performing block audits
with the PoS consensus mechanism. Meanwhile, improving
robustness is also an essential way for models to adapt to
diverse environments. Bai et al. proposed a resilience guaran-
tee framework for multi-UAVs collaborative quality of service
(QoS) management, which can provide resilient and guaran-
teed communication QoS [15]. Wu et al. investigated a UAV
enabled wireless communication, where a number of ground
nodes (GNs) are scheduled to communicate with UAVs in the
existence of jammers with imperfect location information [16].
In [17], Wang et al. suggested a practical algorithm to prevent
the secondary eavesdropper (SE) wiretapping information as
much as possible and proves the security of the UAV itself is
a great significance. The Dec-POMDP-based DRL approach
to make path planning for UAVs have been proposed in [7]. It
succeed in making movement decisions trading off data vol-
ume goals, flight-time efficiency, and navigation constraints.
Finally, Wang et al. suggested a two-stage RL train policy
to plan a collision-free trajectory by leveraging local noisy
observations [18].

However, the existing methods are just considered part of
the factors and still cannot obtain the best performance in
the real task scenario. Our approach considers a combination
of multiple aspects in the adversarial environment and gives
advanced solutions.

III. PROBLEM INQUIRY

Building upon what I have learned about the current devel-
opments and progress in drone path planning, I have identified
two concerns regarding the safety of drones in battlefield
environments: being captured by traps and incomplete data
collection. To validate whether the mentioned concerns have
a real impact, my mentor told me to conduct simulation
experiments. First, I selected a well-structured and high-
performance model as a baseline for the experiments [19].
Then, I made modifications to the model’s environment to
meet the conditions I wanted to verify. Next, I recorded and
analyzed the simulation experiment results to draw relevant
conclusions. Finally, I listed all the impacting factors that
affect the performance and safety of drone missions in a
battlefield environment.

The baseline scenario involves multiple drones collectively
collecting data from IoT devices in the environment, with the
objective of reaching a landing zone before running out their
battery power. Regarding obstacles in the environment, the
baseline scenario specifies tall buildings that drones cannot
fly over and low buildings that they can pass. However, it
does not include provisions for traps capable of capturing
drones. Therefore, I introduced traps into the paths where
drones are allowed to fly (excluding tall building areas and
landing zones). Drones entering these traps would be cap-
tured. The results of the simulation experiments have been
visualized in Fig. 1, Fig. 1(a)-1(c) and 1(d)-1(f) represent the

simulated paths on the two maps, respectively. The blue areas
represent the start/landing areas. The yellow areas represent
tall buildings that drones find difficult to fly over, while the
pink square areas depict low buildings that drones can easily
fly over. The purple squares represent trap areas. The circles
in the figures represent IoT devices, from which drones need
to collect data. The drones’ movement paths are represented
by continuous arrows.

The practical results validate my concerns, as the drones
experienced a high loss rate in trap-infested environments.
Taking Fig. 1(b) as an example, both drones intended to
pass through the sensor-dense right channel to collect data,
but they both fell into traps along this path. Additionally, as
depicted in Fig. 1(c) and 1(f), even with the presence of three
drones, there are still instances where data from at least one
IoT device has not been collected. Clearly, the results of the
simulation experiments validate my hypotheses regarding the
safety issues of drones in battlefield environments. The initial
intention of drone path planning is to collect a larger and
more comprehensive volume of sensing data, which is why
paths tend to concentrate in device-dense areas. However, this
has inadvertently led to a greater risk from traps. On the other
hand, excessive focus on avoiding traps can lead to a decrease
in the drone’s data collection capabilities.

In reality, there are far more factors that influence a drone’s
ability to execute tasks in real-world environments than just
the two factors I mentioned above. At this point, I believe that
analyzing and clarifying the issues that need to be considered
in drone path planning, as well as the importance of each
factor, is essential.

To comprehensively consider the factors, I’m analyzing the
interactions between the objects present in drone missions
from the following three perspectives [20] [21] [22]:

• The objectives that drones themselves aim to achieve.
• The relationships among multiple drones.
• The interaction between drones and their environment.

Regarding the drones themselves, their inherent characteristics
include their: 1) Current position. 2) Battery capacity. 3) Self-
condition (e.g., landing, damaged, or in-flight). For multiple
drones to work in coordination, it’s essential to consider the
amount of data they collectively need to collect while also
avoiding collisions between them.

The interaction between drones and their environment ne-
cessitates considering factors such as: 1) The presence of
buildings in the environment (to avoid collisions with tall,
impassable structures). 2) The presence of traps in the environ-
ment. 3) The distribution of IoT devices in the environment. 4)
The data that needs to be collected within the environment. 5)
Security considerations for the transmission of data between
drones and IoT devices are also a crucial aspect to account
for in drone operations.

Observing the factors listed above, it becomes apparent that
there are conflicting factors, such as drone battery life and
the volumes of data to be collected from the environment,
all within the constraints of ensuring a safe return. Balancing
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(a) Single-drone trajectory on Manhattan
32 map.

(b) 2-drone trajectories on Manhattan 32
map.

(c) 3-drone trajectories on Manhattan 32
map.

(d) Single-drone trajectory on Urban 50
map.

(e) 2-drone trajectories on Urban 50 map. (f) 3-drone trajectories on Urban 50 map.

Fig. 1. Illustration of UAV being captured in battlefield environment under baseline model. The two rows of images shows the flight trajectories of drones
on the Manhattan 32 and Urban 50 maps, where purple grids refer to traps. In all cases, UAVs are likely to fuse at dense regions and easily being captured
(marked by red dotted frames).

these conflicting factors is a challenging aspect of effective
drone path planning.

IV. PROBLEM RESOLVING

After discussing my analysis with my mentor, he suggested
that I consider using reinforcement learning (RL) as a method
to address these issues [23] [24]. RL is a powerful approach
because it can interact with the environment, define rewards
based on those interactions, and optimize decisions based on
these rewards [25].

Previously, the work I referenced when conducting the
simulation happened to use the RL method [19]. The work
used multiple maps representing different information from
various perspectives (including physical environment map,
flying times map, operational status map, device map) and
then stacked these maps together as input into a convolutional
neural network (CNN) [26]. Additionally, this work defined
a reward function that encompassed multiple constraints and
aspects: the total data collected by all drones during the current
time period, penalties for drone collisions, penalties for drones
failing to return successfully, and a constant motion penalty to
inspire drones to minimize their movement time and prioritize
efficient paths. Based on this reward function, the CNN is

trained in multi rounds to output appropriate motion paths for
the UAV based on the input superimposed map.

I agreed that while the work had a strong overall approach,
it lacked consideration for environmental diversity. Building

upon this, I made improvements by considering physical

traps in the environment, the risk of eavesdropping, the

coverage of data collection equipment by drones. Generally,
I have developed an improved model called Multi-UAVs Path
planning model for Data harvesting in Adversarial scenarios
(MPDA for short). The development in my model includes:

• An extended state space for Q-networks, which captures
more information in environment.

• An improved reward function, which balances multiple
conflicting factors like the limited battery capacity and
data collection from remote IoT devices.

• A secure communication method to defend the eaves-
dropping attacks.

Next, I will provide a detailed overview of the overall pro-
cess of the method I proposed. Fig. 2 illustrates the overview
of MPDA model, where each UAV acts as an agent on a certain
map. The process can be described as an agent taking a move
according to the state through the action function, which would
be evaluated and rewarded. Meanwhile, the taken movement
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Fig. 2. Illustration of the MPDA model

will also make the state change correspondingly, which can
influence the next move. To understand the mechanisms of
the proposed model, I need to introduce the following parts:
system setup, map handling, return rate, state space, Q-
network structure, reward function design, training process,
and secure communication mechanism.

• System Setup. To build our assumption, I describe for-
mally the entities that appear in the environment and their
characteristics.
a) Physical Environment: The physical environment de-
mands a gird world M with a size of M ⇥ M 2 N2

where this virtual grid world contains some main sets to
validate the UAV model when it face difficulties or issues.
First, L is defined as the allowed starting/landing area for
UAVs, which consists of L positions given by the set:

L =
n⇥

xl
i, y

l
i

⇤T
, i = 1, ..., L, :

⇥
xl
i, y

l
i

⇤T 2 M
o
, (1)

where x and y represent the abscissa and the ordinate in
the grid world M , and T means transforming the matrix.
Meanwhile, the Z set represents the tall buildings and the
no-fly zone (NFZ) which UAVs cannot pass across and
it defined as follows:

Z =
n
[xz

i , y
z
i ]

T, i = 1, ..., Z, : [xz
i , y

z
i ]

T 2 M
o
. (2)

The obstacles areas that block wireless links/signals, these
areas stored into B set. Equation 3 declare the idea of
obstacles blocking connections and I have considered the
short buildings that UAVs are allowed to fly over even if
the connection are blocked.

B =
n⇥

xb
i , y

b
i

⇤T
, i = 1, ..., B, :

⇥
xb
i , y

b
i

⇤T 2 M
o
. (3)

It is assumed that T is a set of traps positions inside the
grid world given by Equation 4, it refers to the UAVs
positions where they might be captured by the enemy
with a certain probability.

T =
n⇥

xtr
i , ytri

⇤T
, i = 1, ...T r, :

⇥
xtr
i , ytri

⇤T 2 M
o
.

(4)

(a) (b)

Fig. 3. Illustration of centered and non-centered input maps. The position of
UAV is represented by the star and also the intersection of the dashed lines.

b) UAVs: The total number of deployed UAVs moving
within the limit of the grid world M is I , and all the
deployed UAVs form a set I. The state of the i-th UAV
is described via following parameters:

– Position pi (t) = [xi (t) , yi (t) , zi (t)]
T 2 R3 where

the parameter zi (t) refers to the altitude which start
from normally start from 0 to h altitude depends on
UAV ability.

– The operational status �i (t) 2 {0, 1}, which are
inactive and active, respectively.

– Battery energy level bi (t) 2 N
The action space (movement) A of each UAV describe
precisely as follows:

A =

8
>>>>>>>>>>>>><
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>>>>>>>>>>>>>;

,

(5)
where the matrix included hovering, east-moving, north-
moving, west-moving, south-moving, east-sprinting,
north-sprinting, west-sprinting, south-sprinting and land-
ing sets, respectively. In A, the unit distance for each
step is represented as c. Thus, the purpose to define the
sprinting movement is to allow UAVs to rush across traps.

• Map Handling. Following the setup inspired by the [27],
the maps are processed with each drone at the center.
The maps are divided into a local map, which focuses
on the immediate surroundings, and a global map, which
encompasses the broader perspective [28].
�Turning 3D space into 2D space. The process is shown
in Equation 6 and 7,

ũk =

" 
1
c 0 0

0 1
c 0

!
uk

#
(6)
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(a) (b)

Fig. 4. Illustration of the reward rate estimation. The figure illustrates the
process of computing the reward rate when a UAV moves to a specific grid
(like the pink grid). The estimation considers the steps moving to the grid,
the distance among the grid, each IoT device (green grids), and the landing
zone (blue grid), as well as the remaining data on each IoT device.

p̃i =

" 
1
c 0 0

0 1
c 0

!
pi

#
, (7)

where uk and pi refer to the 3D coordinates of the k-th
UAV and the i-th IoT device respectively, while ũk and
p̃i represent the corresponding 2D coordinates.
�Defining the general mapping function. The centering
and global-local mapping algorithms are based on map
layer representations of the state space. To represent any
state with a spatial aspect given by a position and a
corresponding value as a map layer, I define a general
mapping function in Equation 8.

fmapping : NQ⇥2 ⇥ RQ 7! RM⇥M (8)

The map layer A 2 RM⇥M is defined as:

A = fmapping ({p̃q} , {vq}) , (9)

where ap̃q,0,p̃q,1 = vq, 8q 2 [0, ..., Q� 1]. The elements
of A whose index is not in the grid coordinates are
assigned as 0.
�Central mapping. The centering function is defined as:

fcenter : RM⇥M⇥n ⇥ N2 ⇥ Rn 7! RMc⇥Mc⇥n (10)

where Mc can be expressed by M , given as Mc = 2M�
1. A centered tensor B 2 RMc⇥Mc⇥n can be valued with
a tensor A 2 RM⇥M⇥n, as shown in Equation 11.

B = fcenter (A, p̃, xpad) (11)

The elements of B with respect to the elements of A are
defined as:

bi,j =

8
<

:

ãi,j , M  i+ p̃0 + 1 < 2M
^M  j + p̃1 + 1 < 2M

xpad, otherwise,
(12)

where ãi,j = ai+p̃0�M+1,j+p̃1�M+1. ai,j , bi,j and xpad

are vector valued of dimension Rn. The map layers of
A can be padded with the padding value xpad via this
Equation. After the centering process, the construction of

the observation state for each UAV is illustrated in Figure
3a, compared to the construction without centering shown
in Figure 3b.
As shown, the centered map which takes the position of
the UAV as the center and fills the empty grids with xpad.
The centered map will completely cover the previous map
even if the UAV is deployed at a corner of the non-
centered map.
�Global-local mapping. The tensor B 2 RMc⇥Mc⇥n

processed with the centering function will be processed
again with local and global mapping. The local map
function is defined by

flocal : RMc⇥Mc⇥n ⇥ N 7! Rl⇥l⇥n (13)

while the global map function is defined by Equation 14.

fglobal : RMc⇥Mc⇥n ⇥ N 7! R


Mc
g

�
⇥

Mc
g

�
⇥n

(14)

The local mapping and the global mapping are, respec-
tively, based on

X = flocal (B, l) (15)

Y = fglobal (B, g) (16)

The respective elements of X and Y concerning the
elements of B are defined as:

xi,j = b
i+M�


l
2

�
,j+M�


l
2

� (17)

yi,j =
1
g2

g�1X

u=0

g�1X

v=0

bgi+u,gj+v (18)

The process steps in Equation 17 and 18 can be regarded
as an average pooling operation with pooling cell size g.
Parameters l and g are introduced to determine the size of
the local and global maps. During the whole process, the
size of the map will increase by increasing l or decreasing
g.

• Return Rate. Return rate takes into account factors that
are of a conflicting nature during UAV operations: battery
capacity, motion consumption and data to be collected:

w(p(̂i)) =
P
i2I

e�b(i)
P
k2K

�k
dis(p(i),p(̂i))+disback (p(̂i),p(IoT(k)))

,

(19)
where p(̂i) is the position of any grid on the map. �k is
the difference value between the respective data sizes of
devices that have been collected at least once and the not
collected devices. dis(p(i), p(̂i)) refers to the distance
to the target device, while disback(p(̂i), IoT (k)) is the
distance that the current drone passes through p(̂i) and
finally returns to L area. e�b(i) is used to dynamically
adjust the UAV action tendency based on the remaining
power. If the remaining electric quantity is relatively high,
the power-consuming value of e�b(i) changes slowly,
which will not impact w(p(̂i)). Otherwise, it will have a
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Fig. 5. Structure of the DQN in MPDA. Different information in the region will be encoded into the convolutional Q-network. Meanwhile, the operator can
also add his expert experience and controlling orders into the reward rates or the action part, which will be a man-in-the-loop system.

much stronger effect on w(p(̂i)). An illustration is shown
in Fig. 4.

• State Space The state space in a typical DQN model
indicates all combinations of situations within the envi-
ronment. The grid world is the basis for the construction
of state space, and each grid will be marked with one
number representing one aspect of the state in this grid.
I consider the scenario focus of MPDA to constitute the
state space in terms of three dimensions:

⌦ = ⌦phy ⇥ ⌦adversarial ⇥ ⌦return, (20)

where ⌦phy represents the physical map that can describe
the L, B, and Z areas. ⌦adversarial is the adversarial
map, includes the entrapping, eavesdropping, i.e. T area
and area of hostile drones. ⌦return represents the return
rate map, which is based on the return rate function I
designed.
In the proposed model MPDA, both local and global
aspects are considered for each state map:

si(t) = (Ml,i(t), Tl,i(t),Rl,i(t),�l,i(t),

Mg,i(t), Tg,i(t),Rg,i(t),�g,i(t), b(i)),(21)

The states can be derived in Equation 22 to 29:

Ml,i(t) = flocal(fcenter(M,pi(t), [0, 1, 1]
T ), l), (22)

Mg,i(t) = fglobal(fcenter(M,pi(t), [0, 1, 1]
T ), g), (23)

Tl,i(t) = flocal(fcenter(T , pi(t), 0
T ), l), (24)

Tg,i(t) = fglobal(fcenter(T , pi(t), 0
T ), g), (25)

Rl,i(t) = flocal(fcenter(R, pi(t), 0
T ), l), (26)

Rg,i(t) = fglobal(fcenter(R, pi(t), 0
T ), g), (27)

�l,i(t) = flocal(fcenter(�, pi(t), 0
T ), l), (28)

�g,i(t) = fglobal(fcenter(�, pi(t), 0
T ), g), (29)

where Ml,i(t) refers to the position of the UAV in the
local map. Mg,i(t) is the position in the global map,
and pi(t) is the operation status. For different types of
states, I construct the trap map T , the return map R, data
collection map �, and the remaining electric quantity b.

• Q-network structure. Based on the processing of the
map, the Q-network selects optimal actions for the UAVs
according to the previous states. I follow the idea pro-
posed in [19] to construct the deep Q-network, as shown
in Figure 5. The structure of the network can be described
as:

– Integrated all state maps into one hyper map. Then,
the environment map is stacked with physical map,
adversarial map, flying time map, operational status
map and return map that handles together the current
position by the centering function.

– Pass the result from the first step to the global and
local mapping functions.

– The obtained results of the second step fed into the
neutral network to gain the best action of the current
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and next states by obtaining the maximum value and
normalized exponential function, respectively.

Furthermore, the input reward map to the network can
have its grid reward values altered manually based on
geographic importance, allowing for real-time control
of drone flight tendencies. Additionally, the final output
actions can also be adjusted by tuning weights manually.
Both facts allow for the man-in-the-loop control, where
operators can add their expert experience into the opera-
tion of UAVs.

• Reward Function. The reward function is an abstraction
that transfers the optimization goal to the achievable goal,
which assists the model to judge the performance of an
action. The process of this proposed formulation is given
in Equation 30.

ri(t) = ↵
X

k2K

Dk(t) + w(i) + �i(t) + �i(t) + 'i(t) + ",

(30)
The meaning represented by each item of reward function
is given separately:

– ↵
P
k2K

Dk(t): ↵ is a hyper-parameter, the values of

↵ in each UAV should be the same at a particular
time. ⌃k2KDk(t) refers to the total amount of data
collected from the k-th device within t time slots.

– w(i): The summation of all grid return rate, which
is defined in Equation 31.

w(i) =
X

p(̂i)2M2

w(p(̂i)) (31)

– �i(t): When the drone does not collide with an
accident, a reward � is given.

– 'i(t): A reward ⌘ is given when the UAV is not
caught in a trap.

– �i(t): This item denotes the punishment � when the
UAV does not land in time.

– ": This item refers to the constant punishment for
UAVs’ movement, which aims to force UAVs to
reduce the flying time and seek the most efficient
path to finish missions.

The reward function takes into account multiple realistic
environmental factors to help Q-networks make optimal
decisions.

• Training Process. After learning several DQN models, I
choose DDQN and use a multi-round training paradigm
for the proposed path planning model, which maximizes
the expectation of accumulated rewards and improves our
training model. DDQN uses an experience replay buffer
for stable learning, applying epsilon-greedy exploration,
and implementing Double Q-Learning to reduce overes-
timation bias [29]. Loss is calculated by reward function
ri(t) and used to update the online network’s weights
via gradient descent. The target network is periodically
updated to enhance training stability. This process contin-
ues until convergence or a predefined number of episodes,
resulting in a more robust reinforcement learning agent.

• Secure Communication Mechanism. To defend against
the eavesdropping attacks, I apply the idea of Shamir
secret sharing mechanism demonstrated by [30]. In this
method, a certain butch of data D would be encrypted by
the Shamir threshold equation, and an attacker needs to
get at least k values of f (xi) to restore the original data.
The critical process can shown in the following equation:

f (x) = D + a1x+ a2x
2 + ...+ ak�1x

k�1(32)

The essential idea of Adi Shamir’s threshold scheme is
that 2 points are sufficient to define a line, 3 points are
sufficient to define a parabola, 4 points to define a cubic
curve and so on. Thus, it takes k points to define a
polynomial of degree k � 1. This idea could alleviate
the threat of information eavesdropping.
Accordingly, an IoT device will encrypt each batch of
sensing data into n folds, and sends one copy per time
slot when a UAV flies into its grid. In this case, it
allow the existence of malicious UAVs eavesdropping the
message, while only the normal UAVs are guaranteed to
successfully decrypt the original data. Moreover, as the
number k can be determined by data requestors before
the deployment of IoT devices, adversaries can hardly
estimate the necessary scales of malicious UAVs for
overhearing.

V. EXPERIMENTS

Experimental Platform

Following the README documentation of the open-source
code for [19] on Github, I conducted simulation experiments in
the following environments. I used an A4000 server GPU and
a ROG Magician 7 Plus laptop. I established a connection be-
tween the laptop and the server using RSA key authentication
through Visual Studio Code. The experiments were conducted
using the Python programming language and the TensorFlow
machine learning framework. The version of Python is 3.6.2,
and the version of TensorFlow is 2.5.0. Additionally, I also
utilized some dependent code packages. Here are the names
and versions of the dependencies listed: numpy 1.19.5; keras
2.4.3; matplotlib 3.3.0; scikit-image 0.17.2; tqdm 4.45.0. The
authors in [19] have provided modules to handle maps and
simulate multiple drone flights in the code, and I have added
simulations for traps and eavesdropping. At the same time,
I changed the corresponding modules in the code related to
traps and eavesdropping, such as the reward function.

Evaluation Metrics

I conduct experiments to validate the proposed method and
analyze it in the following ways:

• Drone Trajectory.
• Percentage of IoT device coverage.
• Impact of number of drones on results.
• Influence of the number of IoT devices on the results.
• Impact of map trap proportion.
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(a) Single-drone trajectory in Manhattan 32
map.

(b) 2-drone trajectories in Manhattan 32
map.

(c) 3-drone trajectories in Manhattan 32
map.

(d) Single-drone trajectory in Urban 50
map.

(e) 2-drone trajectories in Urban 50 map. (f) 3-drone trajectories in Urban 50 map.

Fig. 6. Illustration of the drone path planning under my model MPDA in battlefield environments. In all images, UAVs can more or less bypass the traps
and avoid being captured.

I use the ratio of the amount of data eventually collected by
all drones collecting to the total amount of data to be collected
as an evaluation metric, called ”collection ratio”.

In addition, as the method in [19] is referenced and im-
proved upon, I use the paper’s method as baseline to compare
it with my proposed method.

VI. ANALYSIS

Fig. 6 shows the UAV movement trajectories when 1, 2,
and 3 UAVs are dispatched on the two maps, respectively.
According to the above figures, method in this paper is
effective in preventing UAVs from entering traps in all types
of situations. For example, as shown in Fig. 1(b) and Fig. 6(b),
when the UAVs plan to pass through the road with dense IoT
devices on the right side to collect data, both of UAVs in Fig.
1(b) enter into the trap, while UAVs in Fig. 6(b) effectively
circumvents the trap. The method in this paper is able to
comprehensively consider the devices scattered all over the
map. As shown in Fig. 7, the action trajectories of the three
UAVs of our method cover all the areas in the map where
the IoT devices are located. To further illustrate the coverage
of the devices, I show the percentage of IoT devices with
different number of UAVs whose data are effectively collected
in Figure 7. The method described in this paper demonstrates a

(a) Manhattan 32 (b) Urban 50

Fig. 7. IoT device collection situation.

high capability for data collection in a battlefield environment.
When number of drones reaches three or more, the effective
data collection approaches nearly 100%.

I also compared the performance with baseline model. For
the Manhattan 32 scenario, as Table I, my model has about
60% greater RSR, collection ratio and collection ratio and
landed than baseline. And for the Urban50, as Table II, our
model has about 65% greater RSR, 75% greater collection
ratio and 70% greater collection ratio and landed than baseline.
Since the baseline did not consider the attacker model and its
algorithm did not take the number of the devices that data are
collected from as a considerable variable. Whereas, my model
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(a) Manhattan 32 (b) Urban 50

Fig. 8. Impact of the number of agents.

takes the return and the avoidance of traps into account, having
a much better performance in the training in the adversarial
military mission circumstance.

Furthermore, I conducted observations on the model’s per-
formance under varying conditions, including different num-
bers of drones, IoT devices, and traps. First, Figure 8 shows
the effect of the number of UAVs dispatched on the final
collection ratio for the same parameter settings. The method
in this paper grows rapidly in the early stage and achieves a
higher collection ratio with fewer UAVs. In the manhattan 32
map, as shown in Figure 8(a), the number of drones dispatched
stabilizes after 4, and in the urban 50 map, as shown in
Figure 8(b), the number of drones dispatched stabilizes after
5. Then, Figure 9 shows the effect of the number of IoT
devices on the data collection ratio. When the number of
devices is small, method in this paper is able to achieve 100%
collection ratio. However, the collection rate decreases with
the growth of the number of devices. As shown in Figure
9(a) and Figure 9(b), the metric decreases more slowly and
smoothly under my model MPDA, and the model has good
stability. Finally, Figure 10 shows the effect of trap percentage
in the map, to show the performance of method in this paper,
the figure compares method in this paper with baseline. A
high trap proportion tends to lead to the destruction of drones
or to avoid traps. Both sprinting and detouring require higher
power cost. Therefore, as the trap rate increases, the collection
ratio decreases. However, the collection ratio of our method

TABLE I
FOR MANHATTTAN32

Method baseline MPDA

RSR 12.3% 74.0%
Collection Ratio 21.5% 81.5%
Collection Ratio and Landed 2.6% 64.3%

TABLE II
FOR URBAN50

Method baseline MPDA

RSR 15.7% 78.6%
Collection Ratio 18.6% 91.7%
Collection Ratio and Landed 2.9% 72.1%

(a) Manhattan 32 (b) Urban 50

Fig. 9. Impact of the number of IoT devices.

consistently decreases more slowly than baseline, and the
green curve representing the performance of our method is
always located at the upper right of the red curve representing
the baseline method in Figure 10(a) and Figure 10(b). The
higher resistance of method in this paper to traps in the map
ensures the safety of UAV operations.

(a) Manhattan 32 (b) Urban 50

Fig. 10. Impact of map trap proportion.

VII. CONCLUSION

In this paper, I study the problem of multi-UAV path
planning in non-cooperative environment. The malicious at-
tackers are assumed to conduct two types of attacks, i.e.,
eavesdropping and trapping attacks. The design goal of path
planning is to achieve a balance on the volume of collected
data, the maximum size of IoT devices with sufficient data
collected, and the security and safety of UAVs. The improved
model MPDA has success in executing the military battlefield
mission, avoiding all the obstacles and traps and defending
from all eavesdropping

Meanwhile, throughout the entire process of working out
this project, I have experienced an extraordinary excitement of
taking advantage of my hobby to have an even further study
on it. Also, I have learned how to efficiently reading scientific
papers and extracting useful information, as well as how to
seeking out and succinctly expressing actual issues. What I
believe is that my project must be one of the most important
concerns for my country.

With this project, I learned a lot of knowledge on artificial
intelligence algorithms, which would benefit me in my future
study and career. I believe that I can have a much deeper
study on this topic with more professional knowledge when I
graduate and join in universities. I will also keep pursuing my
dream in applying my research results to serve my country.
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[21] M. Petrlı́k, T. Báča, D. Heřt, M. Vrba, T. Krajnı́k, and M. Saska, “A
robust uav system for operations in a constrained environment,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 2169–2176, 2020.

[22] F. Mohammed, A. Idries, N. Mohamed, J. Al-Jaroodi, and I. Jawhar,
“Uavs for smart cities: Opportunities and challenges,” in 2014 interna-
tional conference on unmanned aircraft systems (ICUAS). IEEE, 2014,
pp. 267–273.

[23] Y. Matsuo, Y. LeCun, M. Sahani, D. Precup, D. Silver, M. Sugiyama,
E. Uchibe, and J. Morimoto, “Deep learning, reinforcement learning,
and world models,” Neural Networks, vol. 152, pp. 267–275, 2022.

[24] Q. Liu, L. Shi, L. Sun, J. Li, M. Ding, and F. Shu, “Path planning for
uav-mounted mobile edge computing with deep reinforcement learning,”
IEEE Transactions on Vehicular Technology, vol. 69, no. 5, pp. 5723–
5728, 2020.

[25] S. Meyn, Control systems and reinforcement learning. Cambridge
University Press, 2022.

[26] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey of convolutional
neural networks: analysis, applications, and prospects,” IEEE transac-
tions on neural networks and learning systems, 2021.

[27] M. Theile, H. Bayerlein, R. Nai, D. Gesbert, and M. Caccamo, “Uav
path planning using global and local map information with deep rein-
forcement learning,” in 2021 20th International Conference on Advanced
Robotics (ICAR). IEEE, 2021, pp. 539–546.

[28] H. Bayerlein, M. Theile, M. Caccamo, and D. Gesbert, “Uav path
planning for wireless data harvesting: A deep reinforcement learning
approach,” in GLOBECOM 2020-2020 IEEE Global Communications
Conference. IEEE, 2020, pp. 1–6.

[29] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Processing
Magazine, vol. 34, no. 6, pp. 26–38, 2017.

[30] S. A. A. Hakeem and H.-C. Kim, “Centralized threshold key generation
protocol based on shamir secret sharing and hmac authentication,”
Sensors (Basel, Switzerland), vol. 22, 2022. [Online]. Available:
https://api.semanticscholar.org/CorpusID:245869632

11



 

致 谢 
 

感谢Mustafa老师在研究过程中对我进行悉心的学术指导。
Mustafa老师从最初的选题到最终的实验结果分析、报告撰写，一
直给我提供无私的帮助。他牺牲了自己无数的周末休息时间，来和

我讨论、给我指导。并且，他经常在深夜与我探讨方法模型、实验

设置等方面的问题，给予我极大的支持和力量。 
感谢我的母校成都七中，以及我参与科研学习的电子科技大学、

四川大学。感谢这些学校为我提供了珍贵的学习机会和绝佳的学习

平台。在母校老师的帮助下，我能够平衡好学习和科研的时间分配，

全心全意地完成研究。在高校，我有幸和很多优秀的老师、师兄师

姐学习、讨论，这使我能够快速打开自己的视野，令我受益匪浅。

同时，电子科技大学和四川大学提供的计算资源，也是我完成科研

任务的重要保障。 
感谢父亲母亲以及各位长辈的支持与鼓励。在我不自信、迷茫

的时候，是我的父亲母亲告诉我要相信自己，激励我克服困难，不

断进步。 
感谢丘成桐中学科学奖，实现了一个高中生体验科研工作的梦

想。在整个学习过程中，我学到了强化学习、深度学习、加密通信

等很多理论知识和技术方法，也训练了自己的代码能力和科学技术

论文书写能力。更重要的是，我体会到了计算机科学如何用数学模

型和方法一步步的解决一个实际问题，拓宽了我的眼界。 
其它情况说明： 

选题来源于同指导老师的讨论以及自己的个人兴趣。我在随家

人旅游的过程中，对无人机操作产生了浓厚的兴趣。随后，我有幸

入选了中国科协和教育部共同组织实施的中学生“英才计划”，在



高校进行科研学习。指导老师在得知我对无人机的兴趣后，指导我

了解了无人机领域的研究情况，并且在讨论后选择《对抗环境下多

无人机的数据采集路径规划算法》(Multi-UAVs Path Planning for 
Data Harvesting in Adversarial Scenarios)作为题目。 

多无人机路径规划是计算机技术同无人机控制结合的一个重要

任务，通过确定每架无人机的飞行轨迹，让无人机高效和安全的收

集数据信息，在灾难救险、战场侦察等方面有很显著的意义。经过

前期学习，我发现其他学者的研究没有充分考虑环境中的恶劣情况，

比如敌对方设置的陷阱、通信干扰等，但这对于无人机的实际应用

又是有重要价值的。在和指导老师确认想法后，我确定了自己的研

究题目。 
在课题研究过程中，我承担了问题建模、模型设计、代码编程

和实验测试分析等任务，并且完成了论文撰写。 
Kadhim Mustafa Raad Kadhim老师是我的科研指导老师，指导

我完成论文的选题、算法模型研究、代码编程和实验测试分析，并

且指导我完成论文的撰写。指导为无偿指导。 
 
 
 



Curriculum Vitae 
Personal Details 

Title Surname / Family name First / given names Sex Photograph 

Dr. Kadhim Mustafa Raad Kadhim Male 

 

Current Address 

四川省成都市 
Date of birth Nationality 

1991-05-21 IRAQ 
Place of Birth Marital Status 

Baghdad -Iraq Single 
Contact telephone number / Skype Name 

+8613084428131 
Email 

Kadhim_mustafa@uestc.edu.cn 
 

Current and Previous Employment 
Employer name and address Main responsibilities 

University of Electric Science and 
Technology of China 

The main job responsibilities are research in multiple machine 
learning domains, specifically unsupervised learning models for 
UAVs and data clustering and classification. Also, mentor 
students during their research process as well as reviewing their 
scientific papers. Currently, working on important projects that 
would help society in many aspects. 
 

Job title 

Scientific researcher 
Dates of Employment 

Jan. 2023- Present 
Reason for Leaving 

 
 

Employer name and address Main responsibilities 

New vision Co., Ltd. Worked as a manager of the software department. Within the 
period of our working there, our team had finished a lot of 
projects for the government, companies, and banks. The tasks 
of data collection, analysis, and structuring, as well as dividing 
the work among the team, were one of Dr. Mustafa's tasks. As 
well, software development training lectures for the new 
employees were given to engage them in teamwork. 

Job title 

Manager of software department 
Dates of Employment 

Jan. 2014- Oct. 2015 
Reason for Leaving 

To continue studying 
 

Education, Skills, Professional Development Introduction: 
Currently, Dr. Mustafa is a full-time scientific researcher at the University of Electric Science and 
Technology of China; earlier, obtained the Ph.D. degree from the same university. Thus, the Master’s 
degree was obtained from China and the Bachelor's degree from Iraq. However, during the bachelor's 



study, Dr. Mustafa took part in several university completions and gained multiple awards; as a result, 
the third-best student prize was gained at graduation. 

Dr. Mustafa has very good knowledge about the machine learning domain. The recent publication 
was based on investigating clustering and cluster ensemble real-world issues and finding decent 
solutions, aiming to come out with a strong framework. The research papers that were published by 
Dr. Mustafa investigated multiple issues that most recent researchers have not considered, also 
introduced critical solutions that improve the performance of machine learning in multiple aspects. 
Finally, several evaluation standardizations were proposed as well. 

As recent work experience, Dr. Mustafa worked as a freelancer and full-time manager, where multiple 
real-world projects for governments and companies were developed and managed. The two most 
important developed projects are the project to management systems of dead people's information 
and the DNA checking progress management system. These projects were developed for the Ministry 
of Health's Forensic Medicine Department, and they are still working. 

Briefly, Dr. Mustafa's personality is very passionate about learning and ready to work under pressure 
to obtain more knowledge and give better achievements; also, working with a team always leads to 
better service and creative ideas.  

Education and Qualifications 
Year of Start - Award Institution and Department 

2009 - 2013 AL-Rafidain University College 

Qualification and Grade Title of Award 

Bachelor degree Software engineering 

 

Year of Start - Award Institution and Department 

2015 - 2018 Southwest Jiaotong University 

Qualification and Grade Title of Award 

Master’s Degree Computer science and technology 
 

Year of Start - Award Institution and Department 

2018 - 2022 University of Electronic Science and Technology of China 

Qualification and Grade Title of Award 

PhD. Degree Software engineering 

Language skills 
First Language Second Language Third Language 

Arabic English Chinese 
Level Level Level 

Mother language Good Good, have HSK4 Certificate 



Research Publications 
# Paper Name Publisher Type/Date Author 

Order 
1 A novel self-directed learning 

framework for cluster ensemble 
Journal of King Saud 
University - Computer 
and Information Sciences 

Journal / 2022 
Impact factor: 8.839 
Rank: Q1/JCR1 
 

1 

2 A Novel Side-Information for 
Unsupervised Cluster Ensemble 

2021 18th International 
Computer Conference on 
Wavelet Active Media 
Technology and 
Information Processing 

EI Conference / 2021 1 

3 Rapid Clustering with Semi-Supervised 
Ensemble Density Centers 

2019 16th International 
Computer Conference on 
Wavelet Active Media 
Technology and 
Information Processing 

EI Conference / 2019 
 

1 

4 Semi-supervised cluster ensemble 
based on density peaks 

Data Science and 
Knowledge Engineering 
for Sensing Decision 
Support 

EI Conference / 2018 
 

1 

5 A Novel Cluster Ensemble based on a 
Single Clustering Algorithm 

16th Conference on 
Computer Science and 
Intelligence Systems  

EI Conference / 2021 
 
 

3 

7 Comparison of Time Interval Statistic 
and Pulse Shape Discrimination in Fast 
Neutron Detection Method with Liquid 
Scintillation Detector Loaded Gd 

Applied Physics Frontier  Journal / 2017 
Impact factor: 3.56 
Rank: Q2 

7 

Technical skills 
1 Analysing information and Database 

structuring 
5 Python 

2 Programming using C# 6 HTML  
3 Programming using C++  7 CSS 3  
4 Programming using Visual Basic.Net (VB.net)  8 SQL server Database Query (DBQ)  
5 ASP.net With C#  9 SQL server Database Administrator (DBA)  
6 MATLAB 10 Web Services 

 


