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Abstract. Geography of projective varieties is one of the fundamental problems in algebraic
geometry. There are many researches toward the characteristics of Chern number of some
projective spaces, for example Noether’s inequalities, the theorem of Chang-Lopez, and the
Miyaoka-Yau inequality. In this paper, we compute the Chern numbers of any smooth complete
intersection threefold in the product of projective spaces via the standard exact sequences of
c1(X)c2(X) and c3(X)
(%) (%)
on such threefolds under conditions of d;; =4 and d;; =6 respectively. They can be
considered as a generalization of the Miyaoka-Yau inequality and an improvement of Yau’s
inequality for such threefolds.

cotangent bundles. Then we obtain linear Chern number inequalities for
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1. Introduction

One of the fundamental problems in algebraic geometry is to study the geogra- phy of projective
varieties, i.e., determining which Chern numbers occur for a complex smooth projective variety M.
When M is a minimal surface of general type, we have Noether’s inequalities [1]:

This implies

pg(M) = h°(M, wp)

K& = 2pg(M) — 4.



5¢2(M) = c,(M) — 36.
While on the other hand, we have the Miyaoka-Yau inequality:
cZ(M) < 3c,(M).

z()

Hence v is bounded. When M is a threefold of general type with ample canonical divisor, Yau’s

famous mequallty in [2] says
8¢, (M)cy, (M) < 3c3(M).

Hunt studied the geography of threefolds in [3]. Later, Chang and Lopez proved in [4] that the region
ci (M) c3(M)
c1(M)cz (M)’ ¢1(M)cz (M)
bounded. Sheng, Xu and Zhang gave the inequalities of Chern numbers of complete intersection

threefolds with ample canonical divisor in [5]:

described by the Chern ratios (

) of threefolds with ample canonical divisor is

86c3 (M) < c3(M) < LD &,

The theorem of Chang-Lopez has been generalized to higher dimensional case by Du and Sun in [6].
Theorem 1.1. Let X be a nonsingular projective variety of dimension n over an algebraic closed field

« with any characteristic. Suppose Kx or —Kx is ample. If the characteristic of k is 0 or the characteristic
of k is positive and Ox(Kx)(Ox(—Kx), respectively) is globally generated, then

6‘2'1n—2 Cz,z,ln_4' Cn Ap(n)
(—n T 0 _n) €
€1 €1 €1

is contained in a convex polyhedron in AP™ depending on the dimension of X only, where p(n) is the
partition number and the elements in the parentheses arranged from small to big in terms of the alphabet
order of the lower indices of the numerators.

In this paper, we study the inequalities of Chern numbers of complete intersection threefolds in
products of IP1. Throughout this paper, we always let 7r;: P! x P! x .- x P! — P1be the i-th projection,

n+3copies

and Q; = ;(P), where P is a point of P1. Take Hi be a general divisor in the linear system
| 143 d;.Q|, where ditis a positive integer for 1 <i<mn,l <t<n+3. By the Bertini theorem, one can

assume that Hi is a smooth hypersurface fori=1,2, ---,n,and X = H; N H, N ---N H,, is a smooth
threefold.
Our main result is
Theorem1.2. If d;; > 4 forany 1 <i<n,1<j <n+ 3, then we have < Cl(X;CZ(X) 2 _ 4+
(X) (4-1’1.—2)2
2 aXe(x) 1 C3(X)
e & If djj=6foranyl1<i<n,1<j<n+3, thenw > < (X)<—

In Section 2, In section 2, we recall the basic definitions and properties of Chern classes. In section
3, we will computes the Chern numbers of X. In section 4, we study the upper and lower bounds of
c3(X) c1(X)ca(X)
2{¢9) ()

2. Chern classes
In this section, we introduce the definition of Chern classes.



Let M be a smooth projective variety of dimension n. Let A(M) =@®™, A*(M) be the Chow ring of
M. E is a vector bundle on M of rank r. The Chern class c;(E) is a cycle in A{(M), here co(E) = 1. We
letc,(E) =1+ c;(E)t+ -+ c.(E)t" be the Chern polynomial of E.

Chern class ¢;(E) satisfies the properties below:

(1) If Disadivisoron M and E = Oy, (D)is a line bundle, then c,(E)=D.
2)Iff: M > Misa morphism of projective varieties, then ¢;(f*E) = f*c;(E).
B)If0— E' - E—E — 0isa short exact sequence of a vector bundle, then
ct(E) = c(E') - ¢t (E")
= (14 (ENt+ -+ cr (ED" YA + ¢y (BNt + -+ ¢, (E")E™ )
= CT’ (E’) . Cr// (E”)tT'+r” + -
Assume that rank E' =r', rank E"" =r'", so that rank E = ' + 1. As a result, we have
Crrpr(E) = Cr’(E’)Cr”(E”)-
(4) Let s be a global section of E. Assume that the zero set Z(s) of s satisfies that dim Z(s) =dimM —
r,then c,.(E) = Z(s) € A"(M).
We call ¢;(M) = c;(Ty) the i-th Chern class of M.

3. Chern numbers of complete intersection three- folds in products of projective spaces
In this section, we compute the Chern numbers of X.

M =P x P! x...-x P!
n+3

then one sees

ce(M) = ¢t (Ty) = ce(miTpr D -+ D mp43Tp1)
= (1+2Q:t)(1 + 2Q,t) -+ (1 + 2Qp43t).

From the standard exact sequence
0 — Oy, (—H1) = Qylu, — Qy, — 0,
after taking duality, we have
0 — Ty, = Tylu, — Oy,(H1) — 0.

Hence we have

_ ce(Tmluy)
ce(H1) = 2 o )

_ (142Q16)(1+42Q2t)--(1+2Qn+3t) |1,
(1+H18) g, '

From the exact sequence
0 — Tu,nm, — Thylu, N Hy = Oy an,(Hy) — 0,

We obtain



(1+2Q18)(1+2Qn+3t) |H nH,

ct(HiNHy) = A+H )(A+Hz 0|y nH,

By repeating the procedure above, it can be obtained that

_ _ (1420, )(1+2Q,t)--(1+2Qn43t)|x
ce(X) = ce(Hy NN Hp) = (14+H; ) (1+Hy t)-(1+Hp ) |x

It follows that

1+ (XDt + c,(XNDE? + c3(X)3) (A + Hit)(1 + Hyt) - (1 + Hpt) |
= (1+20:t)(1 + 2Q2t) -+ (1 + 2Qn43t)x-

By considering the coefficient of t, we can get

c1(X) + Hylx + Hz|x + -+ Hyplx
= 2Q1|x + 2Q21x + -+ 2Qn43lx-

Thus,
(X)) = (201 +2Q;+ -+ 2Qp43 —Hy —Hy — - — Hy)x )
=3P (2 —dy —dy — - — dn)Qilx
As for the coefficient of t?, we see that
c;(X) + c1(X)(Hy + Hy + - + Hy)|x + Xa<icj<n HiHjlx
=4Y1<i<j<n+3 QiQjlx-
Since
H1+H2+"'+Hn
=X, din Q1 + X1 dizQz + -+ X1y dini3Qnys
We obtain
Cl(X)(Hl + HZ + b + Hn)
= Yisijenss (2 —dyy —dyy — = dy) Xi=q dijQiQ;-
Simple computations show that
HiH; = (d;10Q1 + di2Q2 + - + d; n430n43)(dj1Q1 + dj2Q2 + - + dj n430Qn43)
= Yiskisn+3 dikdj1QrQy
Hence we have
C2(X) =4 Y1<icj<n+3 QiQjlx — Xi<ki<n+s dikdjiQxQilx — @

Yisijents (2 —dy —dyilx — - — dni) Th=1 dijQiQjlx-

Now considering the coefficient of t3, we get



c3(X) + (X)) Xizq HyX + c1(X) Ya<icjen HiHjlx +
215i<j<ksn HiHij|X = 8(215i<j<ksn+3 QinQk)|X-

This implies
4 1
c3(X) = Xiy ik daiy  Aniy, G = 2 Xasrsesn (r-s)(s—)(t-r)=0 dridsjder
1 1
_5(2 - Z?:1 dti) les,tsn,sit dtjdsk - [2 - Eles,tsn,s;tt dtidsj - (3)

(2 =21 dy) Xiq dijlXE=q dek)

where iq, -+, iy, i, j, k take all the arrangements of 1,2, -+, n + 3.
By (1), (2), (3), we can have

S (X) =Xy inijk Gaiy - ni, 2 = Xheq de) (2 = Xieq dej) (2 — Xieq dex), 4)

1
(X)) (X) = Xiyini ik G1iy o Aniy [2 = 5 Xasesentzs deidsj

(5)
—(2 = Xt=1 dei) =1 dej](2 — Xt=1 dere)
4. Inequalities of Chern numbers
In this section, we estimate the upper and lower bounds for Cl(;)(c;)(x) and zigg respectively. Let
1 1
A = XUt=1 du) — 2, (6)
Bij = les,tsn,s#:t dtidsj' (7)
Cijk = Xisrstsn(r—s)(s—t)(t-r)=0 Aridsjdek, ®)
We have
—c3(X) = X inijk Q1iy i, AiAjAg,
1
—c1(X)e2(X) = Xi ik Qi o A, (2 —5Bij + Ai(A; + 2)) Ay, o)
9

1
—c3(X) = X, inijk A1y o dniy, [2 —5Bij + Ai(4; + 2)] (A +2)
1 1 4

4.1. Inequalities of%&z)(x)
1

c1(X)c2(X)

In order to estimate —=;
1 (X)

, we need to estimate

1 1
dlil “dniy (Z_EBij+Ai(Aj+2))Ak _ Z_EBij+Ai(Aj+2)
A1iy - Anin AiAjAx AjAj

foranyl1 <i,j<n+3andi#j.



Lemma 1. Ifdu >4for1<i<nl S] Sn+3,Bi]- <ALA]

Proof. If d;; = 4, we have

D=1 Qe Xfq dij — 20 dyy — 2 X7 dij + 4
1 1
= S Xt=1 dedej — 2Xtoq de + 5200 dydey — 230, dij + 4

Ly Gdy—2)dy + Xy Gy —2)dy +4 > 4.
Since

AA; = (Uf=q d — 2)(Ut=q dij — 2)
=Xte1 A Xf=1 dij — 2071 dpy —2¥0=1 dij + 4
= Bl] - ZAL - ZA] —4 + Z?:l dtidtj

One sees that

1 2-1Bij+Ai(Aj+2)

Lemma 2. When d;; > 4for1<i<n1<j<n+3, then we have E<2T
2 o
(4n-2)2  4n-2

Proof. As d;; = 4, one sees A; = 4n — 2, which means A— < ﬁ We can also have — > 0. By
; _

Lemma 1, we have

l]—

+ 1.

2—2Bj+Ai(Aj+2) 2 1
oy vy AA A] T2
On the other hand, we have
5 1p.. 5 5
[—— 2 Y f——
AiAj AiAj Aj ALA] + A + 1 < ( 2)2 + 4n-2 + 1 (10)
Theorem 4.1. If d;; > 4 forany 1 <i,j <n+ 3, then we have < e (X) 2_ 4+ 2 4
c; (X) (4n-2)2  4n-2
1.
Proof. The desired conclusion follows from Lemma 2.
4.2. Inequalities of —— C3(X)
e (%)

In order to estimate the range of 2= we need to estimate the range of

3()

1 1 1 4
(Z_EBij+AiAj+2Ai) (Ak‘l'z)_EAiBjk"'gCijk ~3
AjAjAy

Lemma 3. If d;; = 6 for any i, j, then we have A;A;Ay > Cijy.



Proof. One sees that

AjAjAr = Bt=1 dei — 2)Et=1 dej — 2)Qi=1 dere — 2)
= Z?:l dti Z?=1 dtj Z?=1 dtk - 22?:1 dti Z?=1 dtj - 22?:1 dtj errl=1 dtk
-2 Z?=1 dyi trfl=1 deg + 42?:1 (dei + dtj +dy) — 8,

and

Yr=1 A Xieq dyj Yt=1 dek

= ler,s,tsn dridsjdtk

= Cijk + Xasr=t<n Qridyrjde + Da<rzesn dridejdig
+ler¢ssn dridsjdrk + Z?:l dtidtjdtk-

We can further have that

AjAjAy
= Cijk + Xasrze<n Aridrjdey — 20721 dij Y=g dek
+ Y1<rzeen Aridejdoge — 220 di Xr=1 dek
+ Xisrzsen Aridsjdr — 2X0q dy Xi=q dij + Y=g degdejdy.

In order to see the relationship between A;A;A; and C;j, we need to cal- culate the value of

Yisrzten Aridrjdoe — 22721 dij Xi=1 dik + Xasrze<n dridejdek
=230 Ay Xieq Ak + Dacresen dridsjdeg — 2301 dy Xt=q dyj

One sees that
Yasretsn Aridrjdee — 2Xde ;Y dek
= Yis<r#t<n dridrjdtk -2 ler,tsn drjdtk

= 215r¢tsn dridrjdtk —2 ler:ttsn drjdtk -2 Z?=1 dtjdtk
= ler:ttsn (dri - Z)drjdtk - 22?:1 dtjdtk > —2 Z?=1 dtjdtk-

Similarly, we can obtain that

Yasrzesn Aridejdee — 2Xdgndye > =237 dyde
and

Yiasressn Qridsjdeg — 2Xdy2dej > =2 ¥i=q dydyj.
By (20), (21) and (22), we can have that

AAjAg > Cij — 20 dijdye — 22721 dyidge — 2 X2 dydej + Y=g ddejde +
4%¢q (dy +dej+dy) — 8.

One sees that



Yt=1 deidejdye — 2= dijde — 2 X0 degdyge — 27— dpidyej
1
= (328, dudydae — 258 dyde) + (350 dudyde— 280y dude)

1
+ (3B, dudede — 280 dydy))

= Lt=1 (% dei — 2) dejdey + Xt=1 G dej — 2) deidey + Xt=1 G de — 2) dyidsj.

If d;; = 6, then we can have that

iy (Sde— 2) dyjdu + Shey (Sde — 2) deder + Sy (5dec — 2) dydy; = 0.

This implies that
AjAjAy > Cijy.
As a result, we have

Cijk

— < L
AiAjAg

0<

Lemma 4. If d;; = 6 forany i, j, then we have

8 1 1 1 1
E_EBL']'+AiAj+2Ai_EAiBjk+gCijk EBjk
AiAjAk AjAk

Proof. One sees that

8 1 1 1
E_EBij+AiAj+2Ai_EAiBjk +Ecijk

AiAjAk

8 1 1 1
_ E_EBij+AiAj+2Ai+gCijk _ EBjk

1

>

AjAjAg AjAg’

By Lemma 1, we have

Bij < ALA],B]k < A]Ak

Hence we have
8 1 1 1
E_EBij+AiAj+2Ai_EAiBjk+gCijk

AiAjAg
8. 1 1 1
§+EBij+2Ai_EAiBjk+ECijk > O
AiAjAk '
This implies
8 1 1 1 1
E_EBij+AiAj+2Ai_EAiBjk+gcijk > EBjk _ l (11)
AjAjAx AjA 2
.. X)cp(X) 1 X 7
Theorem 4.2. If d;; > 6 for any i, j, then we have a@®e®) 1 6 7
c; (X) 2 c; (X) 12



c3(X)

3 (%) >

Proof. According to Lemma 4, we have that —c3(X) > —c;(X)c(X) —%cf(X), ie.,
aX)eX) 1
3 2’
c3(X)

Now, we consider the upper bound of =—
c; (X)

Because A; = Y7, di; — 2 = 6n — 2, we have

w | o
-
N

(6n-2)3  6n-2 (6n-2)2 6 12
c8,1,2 1 (12)
3 4 16 6

1 1 1 1
=utitste
7

12°

5. Conclusions

In this paper, we take M = P x P! x --- x P! as an example to calculate the Chern numbers of

n+3
complete intersection three-folds in products of projective spaces. Thus, in our conclusion, we get its
Chern number and the inequalities that it will satisfy:

If djj > 4forany 1 <i<n1<j<n+3,then we have > <

c1(X) ez (X) 2 2
3 (4n-2)2 + 4n-2 +1.1f
a®e® 1 _ a®) < 7

dij=6foranyl <i<n1<j<n+3 then 300 2 <zm <1

However, those conclusions build up on an important assumption, which is the value of d;;. This
means that there is still room for exploration and explanation of those results when applying other
values of d;.

As for the future meaning of research into this field, it may help in the field of physics. For instance,
Miyaoka-Yau type inequalities are widely applied to the quantum mechanics and field theory, so we
believe researches like this can be applied to more different conditions.

Acknowledgments

We would like to thank our mentor Prof. Sun Hao, who provided support on choosing the topic and
revising our paper. We learned a lot about this subtle field of mathematics under his patient guidance.
Moreover, we would like to appreciate the support given by our family when writting this paper.

References

[1] Christian, & Liedtke. (2008). Algebraic surfaces of general type with small c?; in positive
characteristic. Nagoya Mathematical Journal.

[2] S.-T., Y..(1977). Calabi's conjecture and some new results in algebraic geometry. Proceedings
of the National Academy of Sciences.



Bruce, & Hunt. (1989). Complex manifold geography in dimension {2} and {3}. Journal of
Differential Geometry.

Mei-Chu, ChangAngelo, Felice, & Lopez. (2001). A linear bound on the euler number of
threefolds of calabi—yau and of general type. Manuscripta Mathematica.

Sheng, M., Xu, J., & Zhang, M. . (2014). On the chern number inequalities satisfied by all
smooth complete intersection threefolds with ample canonical class. International Journal of
Mathematics, 25(4), 1450029-.

Du, R., & Sun, H. . (2017). Inequalities of chern classes on nonsingular projective n-folds of
fano or general type with ample canonical bundle.



