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Complex dynamical behavior and stochastic resonance phenomena of a nonlinear pendulum 

LEONG POK HEI 

Abstract 

In this thesis, we use a nonlinear pendulum experiment to analyze the nonlinear 

dynamical behavior of the pendulum under the action of constant torque, periodic torque, 

and random torque simultaneously. We use both qualitative and quantitative methods to 

analysis the nonlinear physics of the pendulum and find the corresponding relationship 

between the modes of motion of the pendulum and the form of the external torques. 

We describe the model as a dynamical system, find out the fixed points and calculate 

the bifurcation curves by Melnikov’s method and the Average Theorem. We also derive 

the curve of the angular position versus angular velocity in phase space. The solution 

gives both the qualitative and quantitative understanding of the complex dynamics in 

phase space. 

We also investigate the effect of random torque on the pendulum. We model the random 

torque as a white noise signal, we add a white noise term to the model. The noise is 

described by a random process. The cooperative effect of noise and applied periodic 

torque can excite the system and induce the so-called Stochastic Resonance. We 

calculate the autocorrelation function and power spectrum by numerical method and also 

by perturbation. We compare the above with the noiseless case. We analysis the power 

spectrum and found the condition of stochastic resonance. 

  

Keywords: Fixed points, bifurcation curves, white noise, autocorrelation function, stochastic 

resonance, power spectrum 
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Chapter 1       Introduction 

This paper studies the dynamics of a nonlinear pendulum under the action of external 

torques. We use Melnikov's method and Average Theorem [1] to calculate the bifurcation 

curves of the nonlinear pendulum under the action of fixed torque and periodic torque 

respectively. In general, when the strength of external torque is increased, the angular 

velocity of the pendulum is also increased, however, we use the nonlinear mathematical 

method to find that the angular velocity of the pendulum will be kept constant under 

certain conditions, i.e., steps appear on the graph of angular velocity versus torque. In 

addition, when the external torque decreases, the angular velocity of the pendulum also 

appears hysteresis under certain conditions. On the basis of the periodic motion of the 

pendulum, we add a random external torque to the system, and it can be regarded as the 

vibration under the interference of white noise. We found that under certain conditions, 

the amplitude of the pendulum will be enhanced under the influence of white noise, the 

white noise has a positive feedback effect on the pendulum motion, the effect of the weak 

signal on the pendulum is amplified, which is the so-called stochastic resonance 

phenomenon [12], [13]. 

The experimental equipment in this paper, we use the nonlinear pendulum in the PASCO 

chaos experiment [8], [9], [10]. We study the motion of a mass installed on the rotating 

disk, we treat the disk and the mass as a system and observe the motion under the action 

of external torques. We Use sensors mounted on the system to investigate the modes of 

vibration of the pendulum. We study the physics of the nonlinear pendulum under the 

influence of external torques, and derive the equation of motion of the pendulum. We use 

the software “ORIGIN” to stimulate the motion of the pendulum, and analysis the 

nonlinear physics of the pendulum qualitatively. Since the equation of motion is nonlinear, 

we find that the motion of the pendulum is complex and sensitive to the applied torques 

and initial conditions [9], [10]. 
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The nonlinear pendulum is shown in figure 1, the mass of the disk is M and the mass of 

the object installed on the edge of the disk is m, as shown in figure 2. The moment of 

inertia of the system is 𝐼 = 𝐼𝑑𝑖𝑠𝑘 + 𝐼𝑜𝑏𝑗𝑒𝑐𝑡 =
1

2
𝑀𝑅2 +𝑚𝐿2,  where R is the radius of the disk 

and L is the distance of the object from the center of the disk. 

  

 

 

 

 

 

 

 

 

 

 

Fig. 2 

Fig. 1 
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disk 

object 
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When the angular displacement of the object is 𝜙 from the equilibrium position, the 

gravitational torque acts on the object is  

 𝑇𝐺 = 𝑚𝑔𝐿 sin𝜙 (1.1) 

As shown in Fig. 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

The external periodic driving torque acts on the disk is 𝑇𝑒𝑥𝑡 = 𝑇𝑚𝑎𝑥 sin(𝜔𝑡 + 𝜃0),  where 

𝑇𝑚𝑎𝑥 is the amplitude and 𝜔 is the angular frequency of the torque respectively, 𝜃0 is the 

initial phase of the object, which can be adjusted by the tension of the spring initially. 

Using Hooke’s law, 𝑇𝑚𝑎𝑥 can be written as 𝑇𝑚𝑎𝑥 = 𝐹𝑚𝑎𝑥𝑅 = 𝑘𝐴𝑅,  where 𝑘 is the effective 

spring constant, 𝐴 is the amplitude of the driving force and 𝑅 is the radius of the disk, it is 

the moment arm of the external torque. 

The external periodic driving torque is  

 𝑇𝑒𝑥𝑡 = 𝑘𝐴𝑅 sin(𝜔𝑡 + 𝜃0) (1.2) 

Also there is a constant torque 𝑇0 acts on the disk. From Newton’s second law: 

 𝑇 = 𝐼𝛼 (1.3) 

 Substituting (1.1), (1.2) into (1.3), 

𝑇𝑒𝑥𝑡 + 𝑇0 − 𝑇𝐺 − 𝑇𝑓 = 𝐼𝛼 

where 𝑇𝑓 = 𝛾𝜙 ̇ is the resistance torque and 𝛼 = 𝜙 ̈  is the angular acceleration of the 

object. 

 

 

𝜙 𝐿 

𝑚𝑔 

Fig. 3 
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The equation of motion of the object is: 

 𝑘𝐴𝑅 sin(𝜔𝑡 + 𝜃0) + 𝑇0 −𝑚𝑔𝐿 sin𝜙 − 𝛾𝜙 ̇ = 𝐼𝜙 ̈  (1.4) 

 

From (1.4), we have 

𝐼𝜙 ̈ + 𝛾𝜙 ̇ + 𝑚𝑔𝐿 sin𝜙 = 𝑇0 + 𝑘𝐴𝑅 sin(𝜔𝑡 + 𝜃0) 

 
𝜙 ̈ + (

𝛾

𝐼
) �̇� + (

𝑚𝑔𝐿

𝐼
) sin𝜙 =

𝑇0
𝐼
+ (

𝑘𝐴𝑅

𝐼
) sin(𝜔𝑡 + 𝜃0) 

 

 

(1.5) 

(1.5) is the equation of motion of the object attached on the rotating disk. From (1.5), we 

know that this is a nonlinear equation. It will exhibit complex and chaotic behavior under 

certain conditions [10], [13]. 

In the following chapters, we will use the method of nonlinear physics to solve (1.5) and 

investigate the dynamics of the nonlinear pendulum under certain conditions. we also use 

numerical analysis to explore the physics of the system under fixed external torque, 

periodic external torque and random torque respectively. 
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Chapter 2       Complex dynamics of a nonlinear pendulum  

2.1   A transformation of the motion of pendulum in the absence of noise 

The equation of motion 

 

 𝐼�̈� + 𝛾�̇� + 𝑚𝑔𝐿 sin𝜙 = 𝑇0 + 𝑇𝑒𝑥𝑡 

 

(2.1) 

Where 𝑇𝑒𝑥𝑡 = 𝑘𝐴𝑅 sin(𝜔𝑡 + 𝜃0) 

 

Hence the equation of motion of the pendulum is: 

 

 𝐼�̈� + 𝛾�̇� + 𝑚𝑔𝐿 sin𝜙 = 𝑇0 + 𝑘𝐴𝑅 sin(𝜔𝑡 + 𝜃0) 

 

(2.2) 

 

Let 𝜏 = 𝜔0𝑡, where 𝜔0 = √
𝑚𝑔𝐿

𝐼
  and  𝜌 =

𝑇0

𝑚𝑔𝐿
 , 𝛼 =

𝑘𝐴𝑅

𝑚𝑔𝐿
, we have 

 

�̇� =
𝑑𝜙

𝑑𝑡
=
𝑑𝜙

𝑑𝜏
∙
𝑑𝜏

𝑑𝑡
= 𝜔0

𝑑𝜙

𝑑𝜏
 

 

�̈� =
𝑑

𝑑𝑡
(
𝑑𝜙

𝑑𝑡
) =

𝑑

𝑑𝜏
(𝜔0

𝑑𝜙

𝑑𝜏
)
𝑑𝜏

𝑑𝑡
= 𝜔0

2
𝑑2𝜙

𝑑𝜏2
 

 

𝜔𝑡 = 𝜔 ∙
𝜏

𝜔0
= (

𝜔

𝜔0
) 𝜏 = Ω𝜏, where Ω =

𝜔

𝜔0
 

 

From the above transformation, the equation of motion of the pendulum is: 

 

 𝑑2𝜙

𝑑𝜏2
+

1

√𝛽

𝑑𝜙

𝑑𝜏
+ sin𝜙 = 𝜌 + 𝛼 sin(Ω𝜏 + 𝜃0) 

 

 

(2.3) 

 

where 𝛽 =
𝐼𝑚𝑔𝐿

𝛾
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Here we set 𝜃0 = 0 without loss of integrity, we investigate the equation of motion of the 

object mounted on the disk: 

 

 𝑑2𝜙

𝑑𝜏2
+

1

√𝛽

𝑑𝜙

𝑑𝜏
+ sin𝜙 = 𝜌 + 𝛼 sinΩ𝜏 

 

 

(2.4) 

 

2.2      Autonomous case 

 

2.2.1   dynamical system 

 

The equation governing the behavior of the pendulum in the autonomous case can be 

written as  

 

 𝑑2𝜙

𝑑𝜏2
+

1

√𝛽

𝑑𝜙

𝑑𝜏
+ sin𝜙 = 𝜌 

 

 

(2.5) 

 

It can be further revised as [3], [6] 

 

 

{
 
 

 
 𝑑𝜙

𝑑𝜏
= 𝑦,                          

𝑑𝑦

𝑑𝜏
= 𝜌 −

𝑦

√𝛽
− sin𝜙

 

 

(2.6) 

 

It is known that any solution of (2.6) can be written in the form [4]  

 𝑑𝜙∗(𝜏, 𝜙0, 𝑦0, 𝜏0)

𝑑𝜏
= 𝑦𝑡𝑟(𝜏, 𝜙0, 𝑦0, 𝜏0) + 𝑦

∗(𝜏, 𝜙0, 𝑦0, 𝜏0) 
(2.7) 

                                                       

                                                                                          

where ytr is the transient response with the property that it goes to zero as  

goes to infinity, and y* is a stable solution. As  varies, the points (*, y*) 

moves along a trajectory. Since 𝜙 ∈ [0, 2𝜋], it is convenient to take phase 

space to be the cylinder. Since the system is dissipative, there are only two 
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kinds of motion on the cylinder [5], as shown in Fig. 4. Fig. 4a corresponds 

to the rotation motion of the pendulum. The motion is the same when  differs 

by 2. This motion occurs when  exceeds a specific value, which will be 

studied in (2.2.4). Fig. 4b corresponds to the dissipative motion of the 

pendulum, it will stop at some point eventually. This point is called the “fixed 

point” of (2.7), which will be studied in (2.2.3). 

 

 

2.2.2    Symmetry 

If we let  

𝜙 → −𝜙, 

𝜌 ⟶ −𝜌. 

(2.5) becomes 

−
𝑑2𝜙

𝑑𝜏2
−

1

√𝛽

𝑑𝜙

𝑑𝜏
− sin𝜙 = −𝜌, 
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then  

𝑑2𝜙

𝑑𝜏2
+

1

√𝛽

𝑑𝜙

𝑑𝜏
+ sin𝜙 = 𝜌 

It is the same as (2.5). It follows that only the range 𝜌 ≥ 0 needs consideration. 

 

2.2.3   Fixed points 

The fixed point of (2.5) is at 𝜙∗ = 𝑦∗ = 0, 

such that  

−sin𝜙∗ + 𝜌 = 0, 

and  

𝜙∗ = sin−1 𝜌 > 0, 

or 

 𝜙∗ = 𝜋 − sin−1 𝜌   (2.8) 

From (2.8), we find there is no fixed point exists when 𝜌 > 1. In order to study the phase 

portrait, we must also study the behavior near the fixed point. Write (2.6) as [3], [4], [7] 

 

{

𝑑𝜙

𝑑𝜏
= 𝑓(𝜙, 𝑦),

𝑑𝑦

𝑑𝜏
= 𝑔(𝜙, 𝑦),

 

 

(2.9) 

where 

𝑓(𝜙, 𝑦) = 𝑦, 

𝑔(𝜙, 𝑦) = 𝜌 −
𝑦

√𝛽
− sin𝜙, 

and let 

𝜀1 = 𝜙 − 𝜙∗, 

𝜀2 = 𝑦 − 𝑦
∗. 

Substituting into (2.9) and neglecting 𝜀2 terms, we get [7] 

 

[

𝑑𝜀1
𝑑𝑡
𝑑𝜀2
𝑑𝑡

] =

[
 
 
 
 
𝜕𝑓

𝜕𝜙
    
𝜕𝑓

𝜕𝑦
𝜕𝑔

𝜕𝜙
    
𝜕𝑔

𝜕𝑦]
 
 
 
 

 [

𝜀1

𝜀 2

], 

 

(2.10) 

where  
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[
 
 
 
 
𝜕𝑓

𝜕𝜙
    
𝜕𝑓

𝜕𝑦
𝜕𝑔

𝜕𝜙
    
𝜕𝑔

𝜕𝑦]
 
 
 
 

= [

0 1

− cos𝜙∗ −
1

√𝛽
] 

 

(2.11) 

In general, we would like to find out the trajectories of (2.10) which gives the time evolution 

of 𝜀1 and 𝜀2 

 [
𝜀1
𝜀2
] = 𝑒𝜆𝜏 [

𝑣1
𝑣2
] (2.12) 

Substitute (2.12) into (2.10), the eigenvalue  of (2.10) is 

 

𝜆 =

−
1

√𝛽
± √

1
𝛽2
− 4 cos𝜙∗

2
 

 

(2.13) 

The general solution of (2.10) is  

[
𝜀1
𝜀2
] = 𝐶1𝑒

𝜆1𝜏 [
𝑢1
𝑢2
] + 𝐶2𝑒

𝜆2𝜏 [
𝑣1
𝑣2
] 

where C1, C2 are determined by initial conditions. Substituting (2.8) into (2.13), we have 

three kinds of fixed points 

1. cos𝜙∗ = cos(sin−1 𝜌) > 0, and 
1

𝛽2
− 4 cos𝜙∗ > 0.  The eigenvalues are real and 

negative. The fixed point is a stable node, any trajectories near this point will tend 

to this node as 𝜏 → ∞. 

2. cos𝜙∗ = cos(sin−1 𝜌) > 0, but 
1

𝛽2
− 4 cos𝜙∗ < 0.  The eigenvalues are complex 

conjugate. The fixed point is a stable spiral. 

3. cos𝜙∗ = cos(sin−1 𝜌) < 0. The eigenvalues are real and have opposite sign. The 

fixed point is a saddle point. 

All three kinds of fixed points are shown in Fig.5. 
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�̇� 

𝜙 
 

 

 

 

 

 

�̇� 

�̇� 

𝜙 

𝜙 
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2.2.4   Bifurcation analysis 

We now use Melnikov function [1] to calculate the bifurcation of the autonomous system 

{
 
 

 
 𝑑𝜙

𝑑𝜏
= 𝑦,                          

𝑑𝑦

𝑑𝜏
= 𝜌 −

𝑦

√𝛽
− sin𝜙

 

Let  𝜌 −
𝑦

√𝛽
  be a perturbation, 

 

{
 
 

 
 
𝑑𝜙

𝑑𝜏
= 𝑦,                                       

𝑑𝑦

𝑑𝜏
= −sin𝜙 + 𝜀 (𝜌 −

𝑦

√𝛽
) ,

 

 

(2.14) 

 

where 0 < 𝜀 ≪ 1 

The unperturbed system is a Hamiltonian [4] 

 

{

𝑑𝜙

𝑑𝜏
= 𝑦,                                       

𝑑𝑦

𝑑𝜏
= − sin𝜙.                            

 

 

(2.15) 

From (2.15), the Hamiltonian of the system is  

𝐻 =
1

2
(
𝑑𝜙

𝑑𝜏
)2 + (1 − cos𝜙), 

as shown in the following diagram 
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The energy of the homoclinic orbit is  

𝐻 =
1

2
(
𝑑𝜙

𝑑𝜏
)2 + (1 − cos𝜙) = 2, 

then 

𝑑𝜙

𝑑𝜏
= ±√2(1 + cos𝜙) 

gives 

 
{
𝜙±
0(𝜏) = ±2 tan−1(sinh 𝜏)

𝑦±
0(𝜏) = ±2sech(𝜏)          

 
 

(2.16) 

   

The Melnikov function [1] is  

𝑀± (𝜌,
1

√𝛽
) = ∫ 𝑦±

0(𝜏) [𝜌 −
𝑦±
0(𝜏)

√𝛽
] 𝑑𝜏

∞

−∞

 

Substituting (2.16) into 𝑀±, we get  

𝑀+ (𝜌,
1

√𝛽
) = ∫ 2 sech 𝜏 (𝜌 −

1

√𝛽
∙ 2 sech 𝜏) 𝑑𝜏

∞

−∞

 

                                                    = ∫
𝑑𝜙

𝑑𝜏
𝑑𝜏𝜌 −

1

√𝛽
∫ 4 sech

2𝜏
∞

−∞
𝑑𝜏

∞

−∞
 

             = ∫ 𝜌𝑑𝜙 −
4

√𝛽
∫ sech

2𝜏
∞

−∞

𝑑𝜏
𝜋

−𝜋

 

 = 2𝜋𝜌 −
8

√𝛽
                        

 

𝑀− (𝜌,
1

√𝛽
) = ∫ 𝜌𝑑𝜙 −

4

√𝛽
∫ sech

2𝜏
∞

−∞

𝑑𝜏
−𝜋

𝜋

 

= −2𝜋𝜌 −
8

√𝛽
         

So 𝑀+ has a simple zero at  

𝜌 = 𝜌𝑐 =
4

𝜋√𝛽
 

and 𝑀− < 0 for all 𝜌 and 
1

√𝛽
. We conclude that  

1. There is a homoclinic bifurcation when 𝜌 = 𝜌𝑐 =
4

𝜋√𝛽
< 1.  

2. Since 𝑀− ≠ 0 all the time, no bifurcation occurs for 𝜌 < 1. 

The phase portraits are shown in Fig.6. 
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   We see that after bifurcation, there always exists a stable limit cycle attracts the whole 

phase cyclinder in the upper plane of Fig. 6. As 𝜌 > 1, there is only one stable steady 

state solution. 

   However, for large 
1

√𝛽
, i.e., 

4

𝜋√𝛽
> 1, we will have no homoclinic bifurcation. The fixed 

point attracts the whole phase cyclinder until 𝜌 > 1. When 𝜌 = 1 and 𝜌𝑐 < 1, there is a 

saddle-node bifurcation of fixed point, and the pendulum jumps into a nonzero angular 

velocity state. A stable limot cycle attracts the whole phase plane as shown in Fig. 7. 

�̇� 

𝜙 
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2.2.5   𝝆 − �̇� curve 

The averaged angular velocity of the pendulum is determined by the following equation 

 
�̇� = 𝜔0 <

𝑑𝜙

𝑑𝜏
> 

 

(2.17) 

 

There are two critical cases: 

1. When all trajectories are attracted by the fixed point. No bifurcation takes place for 

𝜌 < 1. 

<
𝑑𝜙

𝑑𝜏
> = 0 

              This is the zero averaged angular velocity branch. 

 

2. When 𝜌 ≥ 1, all trajectories will be attracted by an unique stable limit cycle. So the 

relation between �̇� and 𝜌 is one to one. Also, as 𝜌 = 1 and 𝜌𝑐 < 1, the pendulum 

will be at a saddle-node bifurcation. It will jump to an another angular velocity state 

discontinouosly. 

       

 

 

 

�̇� 

𝜙 

 

 

Fig. 7 
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   However, when 
1

√𝛽
 is sufficient small, i.e., 

4

𝜋√𝛽
< 1 and 𝜌 ∈ (

4

𝜋√𝛽
, 1), the pendulum has 

two stable states, the stable limit cycle or the fixed point depending on the initial 

conditions. The trajectories on the phase cylinder are attracted by one of two steady state 

conditions, From Melnikov function, we know that the homoclinic bifurcation occurs for 

sufficient large initial value of y. It leads to a running solution in the unperturbed system. 

This condition implies the following physics: When  𝜌 ∈ (
4

𝜋√𝛽
, 1)  and homoclinic 

bifurcation of limit cycle occurs, this is the hysteresis effect of the nonlinear pendulum. 

But as 𝜌 ≥ 1, all tracjectories are attraced by an unique stable limit cycle. We next 

calculate the slope in the finite angular velocity branch of the 𝜌 − �̇� curve. 

�̇� = 𝜔0 <
𝑑𝜙

𝑑𝜏
> 

 = 𝜔0
2𝜋

𝑇
       

then  

 𝑑�̇�

𝑑𝜌
= 𝜔0 ∙ 2𝜋(−

1

𝑇2
)(
𝑑𝑇

𝑑𝜌
) 

 

(2.18) 

 

Since  

𝑑𝑇

𝑑𝜌
< 0 

So 

𝑑�̇�

𝑑𝜌
> 0 

So the slope of the 𝜌 − �̇� curve is positive. But what will happen when 𝜌 decreases, and 

𝜌 approaches 
4

𝜋√𝛽
< 1 ? First we argue that when 𝜌 =

4

𝜋√𝛽
 , the period of the limit cycle 

becomes infinity. This is because of the occurrence of the homoclinic bifurcation. In fact, 

there are characteristic scaling laws that govern the amplitude and period of the limit cycle 

as the bifurcation is approached. The scaling of the period in the homoclinic bifurcation 

case is obtained by estimating the time required for a trajectory to pass by a saddle point. 

 
𝜌 −

4

𝜋√𝛽
≅ 𝐶𝑒−𝜈𝑇 

 

(2.19) 

where  T is the period of the limt cycle. From (2.19) 
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 𝑑𝜌

𝑑𝑇
= −𝜐𝐶𝑒−𝜈𝑇 

 

(2.20) 

Substituting (2.20) into (2.18) 

𝑑�̇�

𝑑𝜌
= 𝜔0 ∙ 2𝜋 (−

1

𝑇2
) (
𝑑𝑇

𝑑𝜌
) 

    = 𝜔0 ∙ 2𝜋(
1

𝑇2
1

𝜐𝐶
𝑒𝜐𝑇) 

We get  

𝑑�̇�

𝑑𝜌
→ ∞  as  𝑇 → ∞ 

which says that the finite angular velocity branch has a vertical slope at �̇� = 0. The 𝜌 − �̇�  

curve for 
1

√𝛽
= 0.5 and   

1

√𝛽
= 2 are shown in Fig. 8a and Fig.8b respectively. 

 

 

 

<�̇�> 
<�̇�> 

𝜌 𝜌 

Fig. 8a Fig. 8b 
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2.3      Nonautonomous case 

 

2.3.1   Dynamical system 

The equation of motion of the pendulum in the nonautonomous case is  

 𝑑2𝜙

𝑑𝜏2
+

1

√𝛽

𝑑𝜙

𝑑𝜏
+ sin𝜙 = 𝜌 + 𝛼 sinΩ𝜏 

 

   (2.21) 

Let  

𝑑𝜙

𝑑𝜏
= 𝑦 

(2.21) becomes  

 

{
  
 

  
 
𝑑𝜙

𝑑𝜏
= 𝑦,                                             

𝑑𝑦

𝑑𝜏
= 𝜌 + 𝛼 sin 𝜃 −

𝑦

√𝛽
− sin𝜙 ,

𝑑𝜃

𝑑𝜏
= Ω                                              

 

 

 

(2.22) 

 

 

(2.22) describes the evolution of the dynamical system in the three dimensional space 

𝐼 = 𝐼(𝜙, 𝑦, 𝜃) 

Since (2.22) is a three dimensional dynamical system, it may has chaotic behaviour. 

However, we only analysis non-chaotic case in this section. [5] 

 

2.3.2   Symmetry 

The system has the same symmetric behavior as in the autonomous case. So we just 

only need to consider the range 𝜌 ≥ 0. 

 

2.3.3   Bifurcation analysis 

In order to give a quantitative understand of the dynamical system, we divided the 

parameter space into domains. Each corresponding to a certain set of steady-state 

solution. Our job is to calculate the boundary of these domains by Melnikov’s method and 

Averaging Theorem. Let 𝛿 =
1

√𝛽
, (2.21) becomes [1]  
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{

𝑑𝜙

𝑑𝜏
= 𝑦                                                        

𝑑𝑦

𝑑𝜏
= − sin𝜙 + 𝜀(𝜌 + 𝛼 sinΩ𝜏 − 𝛿𝑦)

 

 

(2.23) 

  

Here we assume 𝜌 + 𝛼 sinΩ𝜏 − 𝛿𝑦  is a perturbation to the Hamiltonian system. The 

solution to the Hamiltonian system 

𝑑2𝜙

𝑑𝜏2
+ sin𝜙 = 0 

Is  

 
{
𝜙±
0(𝜏) = ±2 tan−1(sinh 𝜏)

𝑦±
0(𝜏) = ±2 sech 𝜏             

 
 

(2.24) 

 

 

The corresponding Melnikov function to (2.23) is  

 
𝑀±(𝜌, 𝛿, 𝛼) = ∫ 𝑦±

0(𝜏)[𝜌 + 𝛼 sin𝜔(𝜏 + 𝜏0) − 𝛿𝑦±
0(𝜏)]𝑑𝜏

∞

−∞

 
 

(2.25) 

 

Substituting (2.24) into (2.25) 

 
𝑀± = ±∫ 𝜌𝑑𝜃 − 4𝛿 ∫ sech

2(𝜏)𝑑𝜏 ± 𝛼∫ 2 sech(𝜏) sinΩ(𝜏 + 𝜏0)𝑑𝜏
∞

−∞

∞

−∞

𝜋

−𝜋

 

= ±2𝜋𝜌 − 8𝛿 ± 2𝜋𝛼 sinΩ𝜏0 sech
𝜋

2
Ω                                                    

 

 

  (2.26) 

Where the thrid integral in 𝑀± is evaluated by the residual theorem in complex analysis. 

We have the bifurcation curves at  

𝑀 =
𝜕𝑀

𝜕𝜏0
= 0, 

𝜕2𝑀

𝜕𝜏02
≠ 0.           

So we have  

Ω𝜏0 = ±
𝜋

2
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In view of (2.26), we get if Ω𝜏0 =
𝜋

2
  and 𝜌 = 𝜌𝑐 − 𝛼 sech (

𝜋

2
Ω),  then 𝑀+ = 0.  Since 𝜌 > 0,  

𝑀− ≠ 0.  For  Ω𝜏0 = −
𝜋

2
,  𝑀± = 0  if 𝜌 = ±𝜌𝑐 + 𝛼 sech (

𝜋

2
Ω).  However, we know if 𝜌𝑐 =

4𝛿

𝜋
≤ 1,  the maximum zero angular velocity torque is  

𝜌 = 1 − 𝛼 sech(
𝜋

2
Ω) 

The bifurcation curves for the nonautonomous case is  

 

{
 
 
 

 
 
 𝜌𝑐

− = 𝜌𝑐 − 𝛼 sech
𝜋

2
Ω

𝜌𝑐
+ = 𝜌𝑐 + 𝛼 sech

𝜋

2
Ω

𝜌𝑐
0 = −𝜌𝑐 + 𝛼 sech

𝜋

2
Ω

𝜌𝜈 = 1 − 𝛼 sech
𝜋

2
Ω

 

 

 

 

 

(2.27) 

These bifurcation curves in the parameter space for Ω = 1, 𝛼 = 0.5  are shown in Fig. 9 

in the 𝜌,√𝛽  plane. Note that 
1

√𝛽
  is the damping term of the dynamical syatem. 

 

 

 

Fig. 9 bifurcation curves 
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The intersection of 𝜌𝑐
−  and 𝜌𝑐

0  is given by  

𝜌𝑐 = 𝛼 sech
𝜋

2
Ω 

 

or  

 
√𝛽 =

4

𝜋𝛼
cosh

𝜋

2
Ω 

 

(2.28) 

(2.28) implies that 𝜌𝑐
0 is meaningless for very damping, i.e., 

√𝛽 <
4

𝜋𝛼
cosh

𝜋

2
Ω 

However, in view of Fig. 9, for √𝛽 ≪ 1,  the system can be viewed as an overdamped 

system. We will discuss this in the next section. For intermediate value of √𝛽 , the 

behaviour of the solution curves in the fifferent domains of the decomposition are 

sketched in Fig. 10. 
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Fig. 10a 

Fig. 10b 

Fig. 10c 

Fig. 10d 

Angular velocity  

Angular velocity  

Angular velocity  

Angular velocity  

Angular position  

Angular position  

Angular position  

Angular position  
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     Fig. 10a implies there exists a stable limit cycle which attracts the solution curves. 

However, this cycle is not unique, the range of the attraction depends on the stability of 

each solution curve, i.e., depends on the initial conditions. When 𝜌 increases (Fig. 10b), 

the attractive region becomes smaller. However, we can not find any running solution in 

this region for any initial conditions. As 𝜌 > 𝜌𝑐
+,  as in Fig. 10c, certain initial conditions 

lead to an unique runnimg solution, but other initial conditions are still attracted by the 

limit cycle, this is an oscillating solution. As 𝜌 > 1 − 𝛼,  as in Fig. 10d, all initial conditions 

lead to running solutions of same point. We think such unique form comes from the 

uniqueness of the Melnikov’s function, as in the autonomous case. This solution also 

produces nonzero angular velocity of the pendulum. 

     The pendulum behaviours for large values of √𝛽  are shown in Fig. 11. 
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   In Fig. 11a, 𝜌 = 0.1.  Such 𝜌  corresponds to the case in Fig.10a, where there is a very 

strong attractor. But in Fig. 11a, the range of attraction becomes smaller. As 𝜌 > 1 −

𝛼 (Fig. 11b), all initial conditions lead to the running solution of the same point. As the 

same situation in Fig. 10d, this solution also produces nonzero angular velocity. 

  However, we also analysis the behaviour for very low and very high driving torque 

frequency. 

a) Ω → 0. 

lim
Ω→0

cosh(
𝜋Ω

2
) = 1 − 𝑜(Ω2) 

(2.27) becomes 

 

{
 
 

 
 𝜌𝑐

− = 𝜌𝑐 − 𝛼 − 𝑜(Ω
2)    

𝜌𝑐
+ = 𝜌𝑐 + 𝛼 + 𝑜(Ω

2)    

𝜌𝑐
0 = −𝜌𝑐 + 𝛼 + 𝑜(Ω

2)

𝜌𝜈 = 1 − 𝛼 − 𝑜(Ω2)     

 

 

 

(2.29) 

 

Here the maximum zero angular velocity external torque is reduced to 𝜌𝜈 ≈ 1 − 𝛼.  We 

illustrate the situation for √𝛽 = 8  and √𝛽 = 4  in the following diagrams. 
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    Compared to Fig. 10, the attractive stable limit cycle becomes smaller in Fig. 12 and 

Fig. 13, since sech
𝜋

2
Ω ≅ 1 , the region between 𝜌𝑐

+  and 𝜌𝑐
−  becomes larger. Fig. 13a and 

Fig. 13b have almost the same behavior. As ρ > 𝜌𝑐
+,  if we keep the same initial conditions 

as in Fig. 10, the stronger initial conditions will lead to solutions which run longer before 

being attracted by the small limit cycles. The hysteresis effect occurs for a much larger 

initial conditions. As ρ > 1 − α,  all solutions become an unique running solution. In Fig. 

12, if ρ < 𝜌𝑐
+,  the behavior of the solution curves are almost the same as in Fig. 13. But 

as  ρ > 𝜌𝑐
+,  the transient effect in Fig. 12b exists longer than that in Fig. 13b. This is 

because the damping in Fig. 12 is small than in Fig. 13. As ρ > 1 − α,  the changing rate 

of the angular velocity in Fig. 12 is much faster than in Fig. 13. This is because the 

damping in Fig. 12 is smaller than in Fig. 13 and the period in the steady state strongly 

depends on both α and damping. However, it is very difficult to observe running solution 

both in Fig. 12 and Fig. 13. We conclude that the energy absorbed by the pendulum in 

very small external torque frequency is very small, i.e., there must exist a resonance 

region for which the pendulum absorbs the most energy from the periodic external torque. 

b) For large value of Ω.  

       We use Average Theorem to derive the bifurcation curves. First, we change the time 

scale of the system. 

       Let 

𝜏1 = Ω𝜏 

and we have  

 
Ω(Ω

𝑑2𝜙

𝑑𝜏1
2) +

1

√𝛽
(Ω

𝑑𝜙

𝑑𝜏1
) + sin𝜙 = 𝜌 + 𝛼 sin 𝜏1 

 

(2.30) 

 

Then 

 

{
 
 

 
 
𝑑𝜙

𝑑𝜏1
=
𝑦

Ω
                                                      

𝑑𝑦

𝑑𝜏1
=
1

Ω
(𝜌 + 𝛼 sin 𝜏1 − sin𝜙 −

𝑦

√𝛽
)
 

 

 

(2.31) 

Now we use Average Theorem to study the bifurcation of (2.31). We now write (2.31) as 

[1] 
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{
 
 

 
 
𝑑𝜙

𝑑𝜏1
= 𝜀𝑦                                                   

𝑑𝑦

𝑑𝜏1
= 𝜀(𝜌 + 𝛼 sin 𝜏1 − sin𝜙 −

𝑦

√𝛽
)
 

 

 

(2.32) 

where ε =
1

Ω
.  By the Average Theorem, we have 

<
𝑑𝑦

𝑑𝜏1
>= 𝜀 < (𝜌 + 𝛼 sin 𝜏1 − sin𝜙 −

𝑦

√𝛽
) > 

where <…> means explicit average with respect to 𝜏1 

 

 
<
𝑑𝑦

𝑑𝜏1
>= 𝜀 (𝜌 − sin𝜙 −

𝑦

√𝛽
) 

 

(2.33) 

 

The average theorem tells us that the bifurcation curves of (2.32) is almost the same as 

(2.33). By average theorem, the bifurcation curves of (2.32) is 

 𝜌𝑐
+ = 𝜌𝑐 + 𝑜(Ω

−1) 

𝜌𝑐
− = 𝜌𝑐 − 𝑜(Ω

−1) 

𝜌𝜐 = 1 − 𝑜(Ω−1) 

 

 

(2.34) 

 

From (2.34), we know that the bifurcation curves are in the neighborhood of 𝜌𝑐 . This 

means that the switch point from finite to zero angular velocity always very closes to the 

autonomous bifurcation curve 𝜌𝑐. The phase diagrams for Ω ≫ 1 are shown in Fig. 14a. 

     For general Ω,  we know from (2.27) that if α is very large, say, larger than 1, so a small 

addition of ρ may result in a running solution. This will give a measurable angular velocity, 

as shown in Fig. 14b. If α is very small, all bifurcation curves will approach 𝜌𝑐  and 𝜌𝜐 will 

close to one. 
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2.3.4   𝝆 − �̇� curve 

The ρ − �̇� curve is determined by the steady state solution of the nonautonomous 

dynamical system. We have to find all equilibrium points, periodic and almost periodic 

solution. [3], [11] 

1. Equilibrium points: These points appear in the phase plane as limit cycle, and the 

average velocity <
𝑑𝜙∗

𝑑𝜏
>= 0. It implies zero angular velocity case. 

2. Periodic solution: It must satisfy the following conditions [5]: 

 
𝜙∗ (𝜏 +

2𝜋𝑝

Ω
) = 𝜙∗(𝜏) + 2𝜋𝑞 

𝑦∗ (𝜏 +
2𝜋𝑝

Ω
) = 𝑦∗(𝜏)             

 

(2.35) 

 

where (𝑦∗(𝜏), 𝜙∗(𝜏)) is the steady state solutions after without transient effect, and 

𝑑𝜙∗

𝑑𝜏
= 𝑦∗ 

The period of the solution is  

𝑇 =
2𝜋𝑝

Ω
 

The average angular velocity is given by the equation 

 
< �̇� >= 𝜔0 <

𝑑𝜙∗

𝑑𝜏
> 

 

(2.36) 

In general 

 
< �̇� > =  𝜔0 ∙ lim

𝜏→∞

1

𝜏
∫
𝑑𝜙∗

𝑑𝜏
𝑑𝜏

𝜏

0

 

= 𝜔0 ∙ lim
𝜏→∞

𝜙∗(𝜏)

𝜏
 

= 𝜔𝑟                       

 

 

 

(2.37) 

 where 

𝑟 =
𝑞

𝑝
,  q and p are integers. 

Thus if r is rational, the solution 𝜙∗ is periodic. If r is irrational, the solution  𝜙∗ is almost 

periodic and the angular velocity is given by < �̇� > = 𝜔𝑟 for two cases. 
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Our next task is to calculate the whole range of the ρ − �̇� curve, the dynamical system 

𝑑𝜙∗(𝜏)

𝑑𝜏
= 𝑦∗(𝜏)                                                     

𝑑𝑦∗(𝜏)

𝑑𝜏
= 𝜌 + 𝛼 sinΩ𝜏 −

𝑦∗(𝜏)

√𝛽
− sin𝜙∗(𝜏) 

Integrate the system from 0 to T, where T is the period of the solution or 𝑇 = ∞  for 

almost periodic solution [7]. 

 
∫

𝑑𝑦∗(𝜏)

𝜏
𝑑𝜏

𝑇

0

= ∫ [𝜌 −
𝑦∗(𝜏)

√𝛽
− sin𝜙∗(𝜏)] 𝑑𝜏 − 𝛼∫ sinΩ𝜏𝑑𝜏

𝑇

0

𝑇

0

           

𝑦∗(𝑇) − 𝑦∗(0)

𝑇
=
1

𝑇
∫ [𝜌 −

𝑦∗(𝜏)

√𝛽
− sin𝜙∗(𝜏)] 𝑑𝜏 −

𝛼

Ω
∙
1

𝑇
(cos𝜔𝑇 − 1)

𝑇

0

 

 

 

(2.38) 

 So (2.37) becomes  

 
0 = 𝜌 −

1

√𝛽
< 𝑦∗(𝜏) > −< sin𝜙∗(𝜏) > 

𝜌 =
< �̇� >

𝜅
+< sin𝜙∗(𝜏) >                        

< �̇� > =  𝜅𝜌 − 𝜅 < sin𝜙∗(𝜏) >                                   

 

 

 

 

(2.39) 

where 𝜅 = √𝛽𝜔0.  From (2.39), we can conclude that 

1. If r is rational, 𝜙∗(𝜏)  is a periodic function, < sin𝜙∗(𝜏) > in general does not 

vanish, and < �̇� > may stay constant during variation of 𝜌.   

2. If r is irrational, 𝜙∗(𝜏)  is an almost periodic function, i.e., < sin𝜙∗(𝜏) > = 0.  As we 

shall see that the ρ − �̇� curve is a straight line. 

3. Since < sin𝜙∗(𝜏) > ∈ [−1, 1],  the range of the ρ − �̇� curve is  

−1 +
< �̇� >

𝜅
< 𝜌 < 1 +

< �̇� >

𝜅
 

By (2.37), we have 

 𝜌 =
𝜔

𝜔𝑐
𝑟+< sin𝜙∗(𝜏) >  

(2.40) 

where 𝜔𝑐 = 𝜔0√𝛽.  From (2.40), for a given 𝜌,  we can find the r- branch of the ρ −

�̇� curve for any fixed set of parameters (
1

√𝛽
, 𝛼, Ω).  However, not all the rational r 

branch is stable. The stability of any specific branch under variation of 𝜌 is determined 

by a variational equation. 
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On the basis of this discussion, the ρ − �̇� curve is shown in Fig. 15 (
1

√𝛽
= 2). 

 

 

 

For general damping, the ρ − �̇� curve is shown in Fig. 16 (
1

√𝛽
= 0.5). Note that we do 

not neglect 
𝑑2𝜙

𝑑𝜏2
.  This is the inertia of the system. When 𝜌 is reduced below 1,  �̇�  does 

not drop to zero until  a retrapping external torque is reached.  This is a kind of 

bifurcation of the system, as calculated from above. However, there also exists a 

rotation number that characterizes the dynamical system. This r reflects the ratio of 

the frequency of the steady solution and the applied periodic torque. If r is rational, <

sin𝜙 >≠ 0.  Furthermore, if r is stable, there must exist a step corresponds to this r. 

Otherwise, the behavior of the ρ − �̇� curve obeys the linear relationship. 

Fig. 15 

Angular velocity 

External torque  
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Fig. 16 

Angular velocity 

External torque  
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Chapter 3    Noise effect in the nonlinear pendulum system 

3.1 Perturbation effect of small noise 

Here we consider the system in fluctuation, we treat the fluctuation as a white noise term 

in the system. The equation of motion: 

 𝑑2𝜙

𝑑𝜏2
+

1

√𝛽

𝑑𝜙

𝑑𝜏
+ sin𝜙 = 𝜌 + 𝛼 sinΩ𝜏 + √2𝐷𝜎(𝜏) 

(3.1) 

 

where 𝜏 is the normalized time and 𝜎(𝜏) is a white noise term and satisfies 

   < 𝜎(𝜏) > = 0,   

< 𝜎(𝜏1)𝜎(𝜏2) > =  𝛿(𝜏1 − 𝜏2) 

 

(3.2) 

Here <…> means the ensemble average [7], [15], and 2D is the strength of noise. We are 

interested in calculating the correlation function < 𝜙(𝜏1)𝜙(𝜏2) > of the system. Its Fourier 

transform gives the power spectrum. The perturbation effect of noise on 𝜙(𝜏) can be 

written as 

 𝜙(𝜏) = 𝜙0
∗(𝜏) + 𝛿𝜙0

∗(𝜏) (3.3) 

where 𝜙0
∗(𝜏) is the solution to the nonlinear pendulum system in the noiseless case. 

Substituting (3.3) into (3.1) gives 

 𝑑2𝛿𝜙0
∗

𝑑𝜏2
+

1

√𝛽

𝑑𝛿𝜙0
∗

𝑑𝜏
+ (cos𝜙0

∗)𝛿𝜙0
∗ = √2𝐷𝜎(𝜏) 

 

(3.4) 

From (3.4), we know that  the autocorrelation function ≪ 𝛿𝜙0
∗(𝜏1)𝛿𝜙0

∗(𝜏1 + 𝜏) ≫ can be 

written in the form [2], [11], [13]: 

 ≪ 𝛿𝜙0
∗(𝜏1)𝛿𝜙0

∗(𝜏1 + 𝜏) ≫ 

=
8𝐷

Ω2𝑠2
𝑒−(

𝑘
2
)𝜏[

1

2(𝑘2 + Ω2𝑠2)
(Ω𝑠 sin (

𝑠Ω𝜏

2
− 𝑘 cos

𝑠Ω𝜏

2
) +

1

2𝑘
cos

𝑠Ω𝜏

2
] 

 

 

 

(3.5) 

 

where 𝑘 =
1

√𝛽
 and s is a constant. (3.5) implies the autocorrelation function ≪

𝛿𝜙0
∗(𝜏1)𝛿𝜙0

∗(𝜏1 + 𝜏) ≫ tends to zero as 𝜏 → ∞.  

We assume 𝜙0
∗(𝜏1) has the form [2]  

𝜙0
∗(𝜏1) ≅ 𝜙0 + 𝑎1 sin(Ω𝜏1 + 𝜗1) + 𝑎2 sin(Ω0𝜏1 + 𝜗1) + 𝑎3 sin[(Ω0 −Ω)𝜏1 + 𝜗3] 
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The autocorrelation function 

 ≪ 𝜙0
∗(𝜏1)𝜙0

∗(𝜏1 + 𝜏) ≫ 

= 𝜙0
2 +

𝑎1
2

2
cosΩ𝜏 +

𝑎2
2

2
cosΩ0𝜏 +

𝑎3
2

2
cos(Ω0 − Ω)𝜏 

 

(3.6) 

where a1, a2 and a3 are some constants. 

and  

 ≪ 𝜙(𝜏1)𝜙(𝜏2) ≫ 

= 𝜙0
2 +

𝑎1
2

2
cosΩ𝜏 +

𝑎2
2

2
cosΩ0𝜏 +

𝑎3
2

2
cos(Ω0 − Ω)𝜏 

+
8𝐷

Ω2𝑠2
𝑒−(

𝑘
2
)𝜏[

1

2(𝑘2 + Ω2𝑠2)
(Ω𝑠 sin (

𝑠Ω𝜏

2
− 𝑘 cos

𝑠Ω𝜏

2
) +

1

2𝑘
cos

𝑠Ω𝜏

2
] 

 

 

(3.7) 

 

We stimulate < 𝜙(𝜏1)𝜙(𝜏2) > and is shown in Fig. 17. Fig. 17a is the noiseless case. Fig. 

17b is the very small noise case. Their power spectrum are shown in Fig. 18a and Fig. 

18b respectively. The stimulated angular velocity correlation function and its power 

spectrum are shown in Fig. 19 and Fig. 20 respectively. 



Research Report                                                                                       2023 S.T. Yau High School Science Award 

(Asia) 

 

 

35 

 

 

correlation time 

correlation time 

Angular position correlation function 

Angular position correlation function 

Fig. 17a 

Fig. 17b 
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Ω (rad/s) 

Fig. 18a 

Ω (rad/s) 

Fig. 18b 

𝐼(Ω) 

𝐼(Ω) 
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correlation time 

Fig. 19a 

correlation time 

Fig. 19b 

angular velocity correlation function 

 

angular velocity correlation function 
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From the above diagram, we conclude the followings: 

1. There are a low frequency peak in the power spectrum of the angular position. It 

happens because of the nonlinear behavior of the system. Such peak is not the 

subharmonic oscillations of the principle frequency. It is because the nonlinear 

term sin𝜙 will give Ω any ratio of the periodic torque frequency, either almost 

periodic or periodic oscillations. 

Ω (rad/s) 

Fig. 20a 

Ω (rad/s) 

Fig. 20b 

𝐼(Ω) 

𝐼(Ω) 
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2. Apparently, a low peak which is stronger than the noiseless case locates in the 

power spectrum. This is because more energy is absorbed during the noise case. 

3. However, the strength  of the low frequency peaks become weaker in the angular 

velocity power spectrum. We explain this as follows: Consider the autocorrelation 

function of the Fourier transform of the angular position [7], [11], 13].  

 
< 𝜙(Ω1)𝜙(Ω2) > =  

1

(2𝜋)2
< ∫ 𝑒−𝑖Ω1𝜏1𝜙(𝜏1)𝑑𝜏1

∞

−∞

∫ 𝑒−𝑖Ω2𝜏2𝜙(𝜏2)𝑑𝜏2

∞

−∞

> 

 

(3.8) 

Let 𝜏1 − 𝜏2 = 𝜏  and 
𝜏1+𝜏2

2
= 𝜏′. After averaging over 𝜏1,  (3.8) becomes  

 ≪ 𝜙(Ω1)𝜙(Ω2) ≫= 𝐼(Ω1)𝛿(Ω1 + Ω2) (3.9) 

where 𝐼(Ω1)  is the power spectrum density of the phase difference autocorrelation 

function. We now calculate the angular velocity power spectrum density. Its 

autocorrelation function is 

<
𝑑

𝑑𝜏1
𝜙(𝜏1)

𝑑

𝑑𝜏2
𝜙(𝜏2) > = <

𝑑

𝑑𝜏1
∫ 𝑒−𝑖Ω1𝜏1𝜙(Ω1)𝑑Ω1

∞

−∞

𝑑

𝑑𝜏2
∫ 𝑒−𝑖Ω2𝜏2𝜙(Ω2)𝑑Ω2

∞

−∞

> 

Substituting (3.9) into above, we get 

 
<

𝑑

𝑑𝜏1
𝜙(𝜏1)

𝑑

𝑑𝜏2
𝜙(𝜏2) > 

= −∫ Ω1𝑒
−𝑖Ω1𝜏1𝑑Ω1

∞

−∞

∫ Ω2𝑒
−𝑖Ω2𝜏2𝑑Ω2

∞

−∞

𝐼(Ω1)𝛿(Ω1 + Ω2) 

= ∫ 𝑒−𝑖Ω1𝜏1Ω1
2𝐼(Ω1)𝑑Ω1

∞

−∞

                                                               

 

 

       (3.10) 

  

So from (3.10), the power spectrum density at Ω1 is Ω1
2𝐼(Ω1),  where 𝐼(Ω1) is the power 

spectrum density of the angular position autocorrelation function. We can see that the low 

frequency peak becomes weaker in the angular velocity correlation function must be very 

small, i.e., it is very common to observe regular oscillation in angular velocity correlation 

function. 
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3.2 Stochastic Resonance 

Here we study the case that the nonlinear pendulum is in an very noisy environment. 

There is a phenomena for which the noise will cooperate with the periodic external torque. 

This is called Stochastic Resonance. This effect only occurs in nonlinear dynamical 

systems. It will allow us to observe an usually undetectable signal. The periodic torque 

may be interpreted as a periodic rocking of the potential [12], [13], [14] as shown in Fig. 

21.   

 

The particle is jiggled randomly by the noise. Consider the nonlinear pendulum oscillated 

with noise. 

 𝑑2𝜙

𝑑𝜏2
+

1

√𝛽

𝑑𝜙

𝑑𝜏
+ sin𝜙 = 𝛼 sinΩ𝜏 + √2𝐷𝜎(𝜏) 

 

(3.11) 

Here we keep the damping and 𝛼 very low, so the noise is not just a perturbation. There 

is a series of random variables 𝜎(𝜏) having 𝜏 as a parameter. Such a time series of 

random variables is generally called a stochastic process. We will solve this problem by 

numerical method. Here we drop the constant torque term, since our main task is to 

investigate the periodic external torque. 

 

3.2.1 Angular position power spectrum analysis 

Here we assume the external periodic torque is too weak to cause the system to scale 

the potential barrier in the absence of noise. An approximate choice of the noise strength 

will enlarge the effect of periodic torque. It is this cooperation effect which produces 

escape events. Since the nonlinear pendulum system can be viewed as a multiwall 

system, the variation of angular position can be approximately divided into two parts. The 

first part characterizes the jump frequency between the wells, i.e., the escape events. The 

second part is the intra-well motion. The motion of the first part requires a much longer 

time to complete than the second part. We will study this effect in the power spectrum of 
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the angular position autocorrelation function. The phase diagram for the escape motion 

is shown in Fig. 22. 

  

 

 

 

    The behavior of the angular position in Fig. 22 is very different from the double well 

system. Once the resonance occurs, the particle will jump to a well far away. The intra-

well motion is a combination effect of the periodic torque and noise. Its frequency is not 

simply Ω. The coherence is conveniently quantified by the power spectrum of angular 

position, as shown in Fig. 23a, Fig. 23b and Fig. 24, where Fig. 23a is the intra-well motion 

with noise and Fig. 24 is the escape motion respectively. 

𝜏 

Fig . 22 

𝜙

𝜋
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Ω (rad/s) 

Fig. 23a 

𝐼(Ω)  
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𝐼(Ω)  

Ω (rad/s) 

Fig. 23b 
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We can draw the following conclusions from Fig. 23 and Fig.24. 

1. There is a strong peak with the frequency of periodic torque in Fig. 23a. 

2. There is another peak near the periodic torque frequency in Fig. 23b. This is the 

other harmonics which arises because of the noise and the nonlinear oscillations 

of the system. The strength of this peak depends on the system parameters and 

the initial conditions. However, when escape events occur, this peak disappears. 

3. Besides the peak of the periodic torque frequency, there always exists low 

frequency peak in the spectrum of Fig. 24. It is because of the very small damping 

term. The particle may thus have many jumps before it settles down in a well. It 

will be a long time before the particle can make another jump. Due to the large 

jump, the period of the < 𝜙(𝜏1)𝜙(𝜏2) > will become very large. So there will be 

some very low frequency peaks appear in the power spectrum. 

4. The power spectrum of Fig. 24 has a Lorentzian-like shape. The autocorrelation 

has the form < 𝜙(𝜏)𝜙(0) >≅ < 𝜙2 >𝑠𝑡 𝑒
−𝜆𝑚𝑖𝑛𝜏, where  < 𝜙2 >𝑠𝑡 is the stationary 

Ω (rad/s) 

Fig. 24 

𝐼(Ω)  
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expected value of  𝜙2 and 𝜆𝑚𝑖𝑛 is a constant value as stated in the reference [11], 

[15]. 

So  

 
                 𝐼(Ω) =  

1

2𝜋
∫ < 𝜙2 >𝑠𝑡 𝑒

−𝜆𝑚𝑖𝑛𝜏
∞

−∞

𝑒−𝑖Ω𝜏𝑑𝜏

=
1

2𝜋
∙
𝜆𝑚𝑖𝑛 < 𝜙2 >𝑠𝑡

𝜆𝑚𝑖𝑛
2 + Ω2

       

 

(3.12) 

 (3.12) implies that the noise power spectrum has a Lorentzian-like distribution. 

5. When the noise is too large, the cooperation disappears and the system becomes 

noise dominated. All escape events in this time are produced by the noise. The 

power spectrum of this condition is shown in Fig. 25. 

 

 

 

 

 

 

Ω (rad/s) 

Fig. 25 

𝐼(Ω)  
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3.2.2 Angular velocity power spectrum analysis 

The angular velocity correlation function and its power spectrum for the intra-well motion 

are shown in Fig. 26 and Fig. 27, where Fig. 26a and Fig. 27a are the noiseless case, 

Fig. 26b and Fig. 27b are the intra-well motion with noise, and for the escape motion are 

shown in Fig. 28 and Fig. 29. The parameters are shown in the diagrams. 

 

correlation time 

Fig. 26a 

angular velocity correlation function 

correlation time 

Fig. 26b 

angular velocity correlation function 
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Ω (rad/s) 

Fig. 27a 

Ω (rad/s) 

Fig. 27b 

𝐼(Ω)  

𝐼(Ω)  
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correlation time 

Fig. 28 

angular velocity correlation function 

Ω (rad/s) 

Fig. 29 

𝐼(Ω)  
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The angular velocity correlation function in Fig. 26a is again a periodic function, and there 

is a strong peak with the frequency of periodic torque in Fig. 27a. However, the angular 

velocity correlation function is an regular oscillation in both Fig. 26b and Fig. 28. 

Consequently, there will not be any very high peaks appear in Fig. 29. We see that peak 

other than the principle peak in Fig. 29 disappears. Since the angular velocity is just the 

time derivative of the angular position through the equation of motion. We believe that 

besides the appearance of very low peaks, the behavior of the power spectrum in the 

angular position and angular velocity cases will be almost the same. 

 

3.2.3 SNR 

When the noise is not too large, there is a peak at the frequency of external periodic 

torque. The amplitude 𝐼(Ω0) rises with increasing noise strength. It reaches a maximum 

value corresponding to the maximum cooperation between the signal and the noise. 

However, this maximum value can not be a fingerprint of the stochastic resonance. Since 

this value may be the resonance effect of the applied external torque (noise plus periodic 

torque) and the natural frequency of the system. As we can not study the phenomena of 

stochastic resonance very clearly in the power spectrum, there is another way to describe 

it. The signal-to-noise ratio (SNR) provided an useful tool to study this effect. It is to find 

the critical noise strength under which an optimum cooperation occurs. Beyond this 

critical noise strength, the switching gradually loses coherence with the signal frequency. 

The dynamics then becomes noise dominated. The SNR is computed as: [12], [13], [14]        

 
𝑆𝑁𝑅 = 10 log(

𝑆

𝐵
) 

 

(3.13) 

where S is the value of the output power spectrum density at Ω0 and B is the value of the 

background at Ω0.  The unit of SNR is in decibels. The condition is shown in Fig. 30. 
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It is interesting to see how resonance is related to the frequency of periodic torque. This 

situation is shown in Fig. 31a and Fig. 31b, where Ω0 = 0.04, 0.2, 1.1, 2.3  respectively. 

Fig. 30 

SNR 
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Fig. 31a 

Fig. 31b 
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We find several interesting phenomena in Fig. 31. 

 

1. The Ω0 = 1.1  has the largest SNR. 

 

2. The peak shifts to a larger noise strength when Ω0 increases. 

 

3. There are two peaks for very small Ω0 = 0.04.  

 

We first find the expression of the dependence of the absorbed energy on the periodic 

torque frequency. After this we can explain the above three cases. Since the damping 

and the strength of the periodic torque is small, the energy of the system 

𝐸 =
𝑦2

2
+ (1 − cos𝜙) 

and  

𝑑𝑦

𝑑𝜏
+

𝑦

√𝛽
+ sin𝜙 = 𝛼 sinΩ𝜏 + √2𝐷𝜎(𝜏) 

gives  

𝑑𝐸

𝑑𝜏
= 𝑦𝛼 sinΩ𝜏 + √2𝐷𝑦𝜎(𝜏) −

𝑦2

√𝛽
 

where the first term on the left hand side describes the energy absorption of the system 

out of the external torque. Let [3], [11] 

(
𝑑𝐸

𝑑𝜏
)
𝑓𝑖𝑒𝑙𝑑

= 𝑦𝛼 sinΩ𝜏 

𝐹(𝜏) = 𝛼 sinΩ𝜏 

So  

 
< 𝐸𝑓𝑖𝑒𝑙𝑑 > =  ∫ < 𝑦(𝜏) > 𝐹(𝜏)𝑑𝜏

∞

−∞

 
 

(3.14) 

 

The inverse Fourier transform of < 𝑦(𝜏) > and 𝐹(𝜏) are 

 
< 𝑦(𝜏) >=

1

2𝜋
∫ < 𝑦(Ω) > 𝑒𝑖Ω𝜏𝑑Ω
∞

−∞

 

𝐹(𝜏) =
1

2𝜋
∫ 𝐹(Ω′)𝑒𝑖Ω

′𝜏𝑑Ω′
∞

−∞

 

 

 

(3.15) 
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Substituting (3.15) into (3.14), 

< 𝐸𝑓𝑖𝑒𝑙𝑑 > =  
1

2𝜋
∫ < 𝑦(Ω) > 𝐹(−Ω)𝑑Ω
∞

−∞

 

 

If 𝛼 ≪ 1,  we can use linear response theory [11], [15] to calculate  < 𝑦(Ω) >, i.e.,  

< 𝑦(Ω) > =  𝜓𝑦(Ω)𝐹(Ω) 

where 𝜓𝑦(Ω) is the susceptibility. So 

< 𝐸𝑓𝑖𝑒𝑙𝑑 > =  
1

2𝜋
∫ 𝜓𝑦(Ω)|𝐹(Ω)|

2𝑑Ω
∞

−∞

 

Using fluctuation-dissipation theorem 

𝜓𝑦(Ω) = 𝐾𝑦𝑦(Ω) 

where 𝐾𝑦𝑦(Ω) is the Fourier transform of the angular velocity autocorrelation function, i.e.,  

 < 𝐸𝑓𝑖𝑒𝑙𝑑 >∝ 𝐾𝑦𝑦(Ω) (3.16) 

 

Hence from (3.16) the absorption of energy is related to the periodic torque frequency 

through the angular velocity autocorrelation function. 

      Here we explain (1). Consider small oscillation of the particle in the potential well 

without 𝛼 and 𝜎(𝜏). The potential  

𝑓(𝜙) = −cos𝜙 = 𝑓(𝜙0) + 𝑓
′(𝜙0)(𝜙 − 𝜙0) +

1

2!
𝑓′′(𝜙0)(𝜙 − 𝜙0)

2 +⋯ 

The oscillation frequency around the potential minimum is  

√𝑓′′(0) = 1 

So if Ω0 ≅ 1, the periodic torque is in phase and resonance with the nonlinear oscillation. 

The particle will absorb the most effective energy. The SNR will be the largest. 

      Next we explain (2). For Ω0 > 1, we know that the absorbed energy will become 

smaller. However, the main effect is that the rapid variation of the period of the external 

torque. The transition probability will become less and it is difficult for the particle to hop 

to the other well during each half cycle. Increasing D helps by increasing the transition 

rate, but past the optimum D the increased chances will be antiphase with the external 

torque. This causes a gradual decline in the output signal. Thus in the high frequency 

regime, the maximum SNR will shift to a larger D and the SNR phenomena may be mostly 

completed by the noise other than the cooperation. 
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     Finally we explain (3). The first peak stems from the particle which goes over the hills 

of the potential well. As shown in Fig. 32. It behaves as a free particle for small friction. 

However, this kind of dynamics is not an optimum choice for the cooperation. It is because 

of the running state other than the oscillation state which reflects the nature of the periodic 

torque and noise. As the noise increases, the behavior of the solution becomes somewhat 

oscillations, as shown in Fig. 33. The appearance of the second peak implies the optimum 

cooperation achieves. The SNR reaches its maximum in this situation. 
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𝜏  

Fig. 32 

𝜙

𝜋
 

𝜙

𝜋
 

𝜏  

Fig. 33 
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Chapter 4    Experiment explores 

The experimental equipment is shown in Fig. 34. 

 

 

The items in the figure are: 

(1) The experimental system 

(2) The PASCO interface connected with light gate to recorded the frequency of the 

external torque 

(3) The PASCO interface connected with rotational motion sensor to recorded the 

motion of the external torque 

(4) DC power supply to drive the external torque 

(5) Data analysis (from light gate) in the PASCO interface 

(6) Data analysis (from rotational motion sensor) in the PASCO interface 

 

 

 

Fig. 34 

(2) 

(3) 

(4) 

(5) 

(6) (1) 
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4.1 Free oscillation 

We rotate the disk away from the equilibrium position and release from rest, as shown in 

Fig.35, the object is rotated freely under the action of gravitational torque and the 

resistance torque respectively. 

 

 

When the disk is rotating, eddy current is induced from electromagnetic induction, which 

generated the resistance torque on the disk. As shown in Fig. 36. 

 

 

 

 

Fig. 36 

m a g n e t  w h i c h 

produces changing 

m a g n e t i c  f l u x 

through the disk 

when it is rotating  

Fig. 35 
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The angular displacement versus time graph and the angular velocity versus time graph 

are shown in Fig. 37. The motion of the disk is damped as time goes by. 

 

  

4.2 Forced oscillation (constant torque) 

We use four small round strong magnets to stick on another rotating disk, as shown in 

Fig. 38a and Fig.38b.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 37 

Fig. 38a Fig. 38b 

Two magnets stack together 

DC drive motor 
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When the rotating disk is close to the stationary disk mounted on the system, as shown 

in Fig. 39a, due to the effect of electromagnetic induction, induced current is generated 

on the surface of the disk. Under the action of periodic changing external magnetic field, 

an induced magnetic moment will be generated on the disk. When the rotating disk rotates 

in a specific direction, a torque in the same direction as the rotational disk will act on the 

stationary disk at the same time.  As long as the distance between the two disks remains 

constant and by keeping the rotational speed of the rotating disc constant, an external 

constant torque can be generated on the disk of the system. 

 

 

 

The phase diagram of the disk is shown in Fig. 39b. There is a limit cycle with small 

amplitude in the phase diagram. 

 

Fig. 39a 

disk mounted on the system 

rotating disk with magnets 

Fig. 39b 
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4.3 Forced oscillation (periodic torque) 

We use a DC motor to generate a periodic torque, as shown in Fig. 40a, which acted on 

the system. The greater the input voltage, the higher the motor speed and the greater the 

frequency of the torque. Hence we increase the voltage, the disk rotates more rapidly. 

The amplitude of the torque can be determined by changing the length of the moment 

arm connected to the rotating shaft, as shown in Fig. 40b. The longer the moment arm is, 

the larger the torque amplitude will be. By adjusting the value of the voltage and the length 

of the arm, the magnitude and frequency of the periodic torque can be changed. Using 

the data measured by the rotatory motion sensor installed on the disk, the relationship 

between the angular displacement and the angular velocity of the disk can be measured 

over time. 

 

 

 

Fig. 40a 

DC motor 

DC voltage source 



Research Report                                                                                       2023 S.T. Yau High School Science Award 

(Asia) 

 

 

61 

 

 

 

 

The phase diagram of the disk is shown in Fig. 40c. After a transition time, the rotation of 

the disk tends to several limit circles with the same center. It can be judged that the 

rotation mode of the disk is composed of several periodic motions of different frequencies 

under the action of a single-frequency periodic torque. It is a characteristic nature of 

nonlinear rotation, that is, when a certain frequency is input into the system, the output of 

the system includes several frequencies, i.e., the motion of the disk is composed of 

several subharmonic modes.   

 

 

 

Fig. 40b 

moment arm 

shaft 

Fig. 40c 
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4.4 Forced oscillation (periodic torque and random torque)  

To generate random torque, we use the following method: 

1. Use the Arduino control board to load the Arduino program that can generate random 

signals. 

2. Connect the motor driver circuit board to the Arduino control board. 

3. Connect the DC voltage to the motor drive circuit board. 

4. Connect the DC motor to the motor drive circuit board, as shown in Fig. 41a. 

5. Connect the DC motor to one end of the spring mounted on the system, and connect 

a motor capable of generating periodic torque to the same end of the same spring, as 

shown in Fig. 41b. 

 

 

 

 

 

 

 

 

 

Fig. 41a Fig. 41b 

Arduino control broad 

motor driver circuit board 

DC voltage source 

spring 

random torque 

periodic torque 
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When the power is turned on, the Arduino control board transmits the program to the 

motor drive circuit board. When the circuit board receives the program, it will input a DC 

voltage signal of random intensity to the motor, i.e., the motor will be driven by random 

voltage. The random rotation of the motor inputs random torque to the disk in the system. 

When two DC motors are started at the same time, both the periodic torque and random 

torque will act on the disk of the system at the same time. Under the simultaneous action 

of these two torques, the disk will exhibit specific periodic motion. 

The phase diagram of the rotating disk is shown in Fig. 41c, the limit cycle is complex and 

also composed of several subharmonic with different frequencies and different 

amplitudes. 

 

 

 

 

 

 

 

 

 

 

Fig. 41c 
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Chapter 5    Conclusions 

 

We had studied the dynamics of the complex pendulum system by nonlinear method. The 

pendulum behavior in the noiseless case can be divided into two parts: 

1. Autonomous case: The system undergoes two different behaviors. They are 

separated by a bifurcation curve. The appearance of fixed points in the system 

described the first kind of motion. There are two kinds of fixed points in this system. 

When the dynamics stops at 𝜙∗ = sin−1 𝜌,  the fixed point is a sink. Furthermore, if 

1

√𝛽
− 4 cos𝜙∗ > 0,  it is a stable node. If  

1

√𝛽
− 4 cos𝜙∗ < 0,  it is a stable spiral. 

When it stops at 𝜙∗ = 𝜋 − sin−1 𝜌,  the fixed point is a saddle. We calculate the 

bifurcation through Melnikov’s method. Here we consider the damping and the 

constant torque are perturbation to the original Hamiltonian system. When 𝜌 < 1,  

the bifurcation occurs at 𝜌 = 𝜌𝑐 =
4

𝜋√𝛽
.  This is a homoclinic bifurcation, i.e., some 

part of a limit cycle (running solution) moves closer to the saddle point and 

becomes a homoclinic orbit eventually. This phenomena is an hysteresis effect. 

However, when 𝜌𝑐 > 1,  there will not has such effect. When 𝜌 = 1,  there occurs a 

saddle-node bifurcation. All orbits join to an unique running solution. This gives 

non-zero angular velocity in the motion. The relationship between the constant 

torque and angular velocity is one to one. The pendulum will jump discontinuously 

to a zero angular velocity state when 𝜌  decreased to  
4

𝜋√𝛽
.  The period of the limit 

cycle will tend to infinity at the homoclinic bifurcation. 

2. Nonautonomous case: The system behavior at 𝜌 < 1 will be more complex 

because of the external periodic torque. There are several bifurcation curves 

governed the system behavior when 𝜌 < 1.  Instead of the fixed points, there are 

some limit cycles (oscillating solutions) which attract the nearly orbits. They  

become more unstable as 𝜌 exceeds every bifurcation curve. When 𝜌 > 𝜌𝑐
+,  some 

initial conditions lead to a running solution. This is the hysteresis effect. As 𝜌 > 1 −

𝛼,  all solutions are running solutions and 𝜌 = 1 − 𝛼  is the maximum zero angular 

velocity torque. When Ω  is very small, the attracting limit cycle becomes smaller, 

i.e., there is a resonance region for which the system will absorb most energy from 

the periodic torque. When Ω is very large, we use average theorem to calculate the 
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bifurcation curves. We find this curves are almost the same as in the autonomous 

case. The most striking effect of periodic torque on the pendulum is the 

appearance of steps. This steps reflect the periodicity of the running solutions. We 

had proved that not all periodic running solutions gives the steps. Besides steps, 

the system behavior in the non-zero angular velocity case will have the linear 

relationship. And there will be no hysteresis effect for heavy damping case.  

We also add a white noise term to the system. The behavior will be very different depends 

on the value of noise. 

1. When the noise is very small, we use perturbation to calculate the angular position 

autocorrelation function. We also stimulated the power spectrum of the angular 

position and the angular velocity. The noise will enlarge peaks. The strength of the 

low frequency peaks in the angular velocity case become weaker. It is because of 

the strength of such peaks are multiplied by the correspond Ω with respect to the 

angular position case. 

2. When the noise is large, there will be some escape events take place in the 

system. It is because of the cooperation of noise and the periodic torque. This is 

called Stochastic Resonance. It only occurs in nonlinear systems. We study this 

phenomena through the power spectrum analysis. There always exists a peak at 

the same frequency as the periodic torque. The noise power spectrum has a 

Lorentzian-like shape. The ultra-low frequency peaks represented the long 

periodicity of the angular position autocorrelation function. At the same time, the 

angular velocity autocorrelation is a regular oscillations. The optimum cooperation 

can be studied through SNR. We find the SNR peak shifts to a larger D as 

Ω0 increases. The peak strength is related to the absorbed energy from the 

periodic torque. However, there may not be only one peak in the SNR for every 

Ω0.  This reflects the multiwell nature of the nonlinear complex pendulum system. 
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