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Unveiling the High-Resolution Structure of Saturn’s Rings from Cassini Radio Science Occultations

Bryan Guo1 and Brandon Xu2

1Canyon Crest Academy, San Diego, CA
2Phillips Academy, Andover, MA

ABSTRACT

Saturn’s rings display a remarkable range of structures, from broad plateaus to fine spiral waves

and ripples. Understanding the origins and dynamics of these features requires detailed profiling of

the rings at the highest possible resolutions. Currently, the Cassini radio occultation profiles archived

in the NASA Planetary Data System (PDS) have a radial resolution of 1 km. We introduce a novel

diffraction inversion technique that achieves unprecedented radial resolutions down to 55 m, over an

order of magnitude finer than existing profiles. In addition, two interpolation-based variants retain

much of the accuracy of the primary approach and still significantly outperform the standard Fresnel

quadratic approximation method at a fraction of the computational cost. The validity of high resolution

reconstructions is assessed using a forward modeling test: starting from an ideal ring profile, we

generate a synthetic signal under actual occultation geometry, process through our full reconstruction

pipeline, and confirm that the expected profile is accurately recovered. Multi-resolution reconstructions

are presented for five features of the C ring: the Maxwell ringlet, the Titan −1:0 nodal bending wave,

two vertical bending waves, and short-wavelength ripples. For each feature, we compare profiles ranging

from 1 km resolution, equivalent to those on the PDS, to 55 m, highlighting structures that emerge

only at finer scales. Our advances open the possibility of studying previously inaccessible features

in Saturn’s rings and provide new opportunities for Kronoseismology, the study of Saturn’s interior

through its ring structure.

Keywords: occultations, planets: rings
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1. INTRODUCTION

The rings of Saturn constitute a dense, self-gravitating disk of predominantly icy particles orbiting in Saturn’s

equatorial plane. These particles vary greatly in size, from micrometer-scale grains to boulders tens of meters across.

Collectively, these particles exhibit dynamic features such as gaps, plateaus, self-gravity wakes, bending waves, and

spiral density waves (Shu 1984). Understanding these features, especially at a fine scale, can provide valuable insights

into the physics of self-gravitating particulate disks, moon-ring interactions, and even oscillations within the interior

of Saturn itself (Marley & Porco 1993).

The Voyager missions in 1980 and 1981 delivered the first high-resolution (∼1 km) radio and stellar occultation

profiles of the rings, enabling the first detection of small-scale features including sharp edges, narrow ringlets, satellite

wakes, and a plethora of new wavelike phenomena (Shu 1984; Marouf et al. 1986). However, it was the Cassini-

Huygens mission that ultimately revolutionized the study of Saturn’s ring structure as it orbited Saturn between

2004 and 2017. The Imaging Science Subsystem (ISS) provided strikingly detailed images at radial resolutions of

one to several kilometers, as illustrated in Figure 1 (Porco et al. 2005). Beyond imaging, occultation experiments

have enabled even finer structural studies. Both the Ultraviolet Imaging Spectrograph (UVIS) and the Visible and

Infrared Mapping Spectrometer (VIMS) on Cassini observed the light of background stars as they passed through the

rings, providing one-dimensional “cuts” across the ring system. These stellar occultations provide a wide variety of

observation geometries, with the ring opening angle varying from nearly face on to nearly edge on (Colwell et al. 2010;

Nicholson et al. 2020).

In this paper, we focus on a third variety of occultations that make use of the radio signals transmitted by the

Radio Science Subsystem (RSS) as Cassini passed through Saturn’s rings. The probe conducted more than 100 radio

occultation experiments, transmitting coherent phased radio signals of three different wavelengths through the rings

to Earth-based radio telescopes in the NASA Deep Space Network (DSN). For each occultation profile, the intensity

of the signal measured at Earth is affected by diffraction from the structure of the rings. Diffraction by ring material

fundamentally limits the resolution of any occultation profile unless these effects are explicitly corrected. This limit,

20
25

 S
.-T

. Y
au

 H
igh

 S
ch

oo
l S

cie
nc

e A
ward

仅
用
于

20
25
丘
成
桐
中
学
科
学
奖
论
文
公
示



4 Guo & Xu

(a) A section of Saturn’s B Ring showing a wide range of
colors (NASA/JPL-Caltech 2018)

(b) A spiral density wave in the B ring (Janus
2:1) (NASA/JPL-Caltech 2017a)

(c) Waves left in the wake of Saturn’s moon
Daphnis (NASA/JPL-Caltech 2017b)

(d) A spiral density wave and bending wave, at center and
right (NASA/JPL-Caltech 2008).

Figure 1. Images of fine-scale structure in Saturn’s rings captured by the Imaging Science Subsystem.

set by the Fresnel scale F ∼
√

λD
2 , where λ is the wavelength and D is the distance from the spacecraft to the ring

plane intersection, can reach 10 km or more for certain Cassini geometries. Fortunately, since the RSS, like Voyager

1, records the full complex signal including phase, it is possible to invert the diffraction integral to reconstruct a

profile at a resolution much finer than F (Marouf et al. 1986). The ability to resolve fine-scale structures in the rings,20
25
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High-resolution C ring radio reconstruction 5

demonstrated by both Voyager and Cassini, has led to the development of Kronoseismology, which uses wave patterns

in Saturn’s rings to study the planet’s interior (Marley & Porco 1993; Hedman & Nicholson 2013).

The remainder of this paper is organized as follows. In Section 2 we discuss the scientific motivation behind

the importance of obtaining high-resolution reconstructions of various ring structures. In Section 3.1, we review

the mathematics of diffraction reconstructions from radio occultations and review key definitions of Cassini RSS

occultation geometry. Section 4 introduces our primary inversion technique alongside two efficient interpolation-based

variants, and compares their accuracy and computational cost with the standard method based on Fresnel quadratic

approximation. In Section 5 we introduce a forward modeling framework to validate our new method at the highest

resolutions, and under the most extreme geometric configurations. In Section 6 we apply our new reconstruction

method to several features in the C ring, comparing results over a range of resolutions and retrieving opacity profiles

of waves at resolutions as fine as 55 m, providing qualitative assessments of the benefits of increased resolution. In
Section 7, we discuss the scientific value of our study within the field of Kronoseismology, as well as potential future

directions for exploration with these new reconstruction techniques. Appendix A contains details of the derivations of

the coefficients used in the octic and hexadecic inversion techniques introduced in Section 4, and Appendix B contains

a derivation of collapsing the double integral for T̂ into a single integral via stationary phase approximation to the

ϕ-integral in the forward model. Collectively, these analyses establish the conditions under which high-resolution

opacity profiles can be robustly obtained, and provide a foundation for future Kronoseismological investigations.

2. SCIENTIFIC MOTIVATION

Kronoseismology is the ring-based analogue of helioseismology: resonances between Saturn’s internal normal-mode

oscillations and orbiting ring particles launch waves whose pattern speeds encode the frequencies of the driving modes.

These waves fall into two main categories. Spiral density waves are driven at inner or outer Lindblad resonances

(ILRs/OLRs), where Saturn’s oscillations compress and rarefy material within the ring plane. Bending waves arise

at vertical resonances (IVRs/OVRs), which tilt the local ring plane and create vertical corrugations. Because each

mode’s frequencies are dependent on the planet’s internal density, composition, and rotation, the rings effectively

act as a seismometer that probes the planet’s interior. Unlike traditional gravity or magnetic field measurements,

Kronoseismology is sensitive to the planet’s density stratification and differential rotation, proving to be the most

sensitive method to detect planetary acoustic oscillations (Marley & Porco 1993).

Marley and Porco first predicted that Saturn’s fundamental modes (“f -modes”) would drive outward-propagating

waves at their outer Lindblad resonances in the C ring. Two decades later, Hedman & Nicholson (2013) used stellar

occultations from Cassini’s VIMS instrument to identify six unexplained, multi-armed density waves whose pattern

speeds matched those predicted f -mode frequencies to within ∼0.1%—the first direct detection of planetary oscillations
via the rings. Subsequent papers in the Kronoseismology series (I-VII) have expanded the census to ≳ 40 waves,

including higher-order g-modes and possible inertial-gravity hybrids, and have mapped them throughout the inner and

middle C ring as well as narrow parts of the B ring (Hedman & Nicholson 2013; Hedman and Nicholson 2014; French

et al. 2019; Hedman et al. 2019; French et al. 2021; Hedman et al. 2022; Afigbo et al. 2025).

Certain features have even been traced back to discrete external events. For example, a system of small periodic

ripples in the inner C ring, most prominent between 74500 km and 77765 km, has been attributed most likely to the

aftermath of an impact with a debris cloud in late 1983 (French et al. 2025; Hedman et al. 2007, 2011). These vertical

corrugations, exhibiting wavelengths as short as ∼ 1 km and evolving over time, encode information about the ring’s

dynamical response, viscosity, and collisional properties. More recently, higher-resolution RSS data have provided

further evidence for the impact results (French et al. 2025).

However, fully resolving the structure and evolution of these subtle features is fundamentally limited by the resolution

of available data. Currently, the best opacity profiles constructed from Cassini RSS data, which are archived in the

NASA Planetary Data System (PDS), are limited to resolutions of 1 km. Higher resolution reconstructions would enable

the detection of additional mode-driven waves and yield more precise constraints on the morphology and propagation

of previously identified features. Indeed, many predicted resonances with higher-degree gravity and internal modes
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6 Guo & Xu

should lie at radii where the corresponding wavelengths are at hundreds of meters (French et al. 2021; Hedman et

al. 2022). Mapping and characterizing these subtle waves may help determine the depth of Saturn’s stratified layer

(Mankovich & Fuller 2021), as well as constrain the internal profile of the C ring itself. Meeting these scientific

objectives requires reconstructing radio occultation profiles at resolutions closer to or surpassing 100 m, an entire

order of magnitude improvement over archived Cassini products.

Although Marouf et al. (1986) first demonstrated a practical inversion of the Fresnel diffraction integral, producing

Voyager-based opacity profiles at 900 m resolution, the computational techniques and geometric assumptions underlying

such inversions remain a limiting factor when applied to resolutions on the hundred-meter scale. In particular, the

reconstruction depends on analytic approximations, such as low-order polynomial interpolations, whose domains of

validity are insufficient at higher resolutions. Consequently, it is necessary to refine these inversion methods, which

involves improving their accuracy in modeling diffraction in extreme geometric configurations, as well as managing
the effects of noise. Inherently, there is also a tradeoff in computational cost when attempting to construct higher

resolution profiles which must be balanced as well.

A detailed, high-resolution characterization of both spiral density and bending waves is crucial to revealing the small-

scale physics that govern how energy, angular momentum, and mass are distributed in particles. Such reconstructions

will reveal the fine-scale radial and vertical structure of spiral density and bending waves, enabling precise measurements

of their amplitudes and wavelengths. In particular, high-resolution, high signal-to-noise radio reconstructions could be

used to measure the vertical extent of bending waves, a property inaccessible to VIMS, UVIS, or previous RSS datasets.

By combining analyses of a bending wave across multiple observations, it becomes possible to reconstruct a three-

dimensional model of the spiral wave Furthermore, sub-kilometer resolutions in optical depth profiles reveal the onset

of gravitational instabilities and behavior between colliding particles—processes that remain hidden at kilometer-scale

resolution. When combined with stellar occultation analyses from Cassini’s VIMS and UVIS, which have provided

the bulk of detailed ring wave detections to date (Colwell et al. 2009; Hedman & Nicholson 2013; PDS Rings Node

2025), these radio science profiles will yield a synergistic view of ring response to Saturn’s oscillations and constrain

the underlying properties and particle size distributions that govern wave propagation. By reconstructing opacity

profiles at sub-100 m resolutions, we gain sharper constraints on Saturn’s internal oscillations and a more complete

understanding of the structure of the waves themselves.

3. BACKGROUND

3.1. Diffraction

Details of the Saturnocentric occultation geometry have been discussed at length elsewhere (Marouf et al. (1986),

Marouf et al. (1982)). Hereafter we adopt the naming conventions of the occultation geometry as presented in Marouf et

al. (1986). The reconstruction of the ring transmittance relies on a Huygens-Fresnel description of coherent diffraction

through an infinitesimally thin planar “gray screen” (Born and Wolf (2019), Marouf et al. (1986), Marouf et al.

(1982)). Consider a monochromatic plane wave of unit amplitude and wavenumber k = 2π
λ incident along û upon a

thin, circularly symmetric screen located in the xy-plane. For a distant observer at R, the complex field Ec is given

by the superposition of secondary spherical wavelets emitted from each infinitesimal area element dρ on the screen:

Ec ≈ E0

∫∫
S

[µ0

iλ
T (ρ) exp(ikû · ρ)

] exp(ik∥R− ρ∥)
∥R− ρ∥

dρ, (1)

where E0 is a constant reference amplitude, µ0 = sinB is the obliquity factor, and T (ρ) is the complex transmittance

encoding both amplitude attenuation and phase delay imparted by the ring material. To remove geometric phase

terms introduced by the spacecraft–observer path, one defines the normalized coherent field

T̂ (ρ0) =
Ec
E0

exp(−ikû ·R), (2)
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High-resolution C ring radio reconstruction 7

which satisfies |T̂ | = 1 in the absence of ring effects. In the occultation geometry of Marouf et al. (1986), we obtain

the following crucial integral relationship between T and T̂ :

T̂ (ρ0) =
µ0

iλ

∫ ∞

0

ρT (ρ)dρ

∫ 2π

0

exp (iψ(ρ0, ϕ0; ρ, ϕ))

∥R− ρ∥
dϕ. (3)

Exploiting the near-circular symmetry of the rings permits reduction of the two–dimensional transform in Equation (3)

to a one-dimensional radial integral, making it possible to invert the observed T̂ (ρ0) along a single occultation track

and thereby recover the radial profile of T (ρ). In particular, applying the stationary phase approximation to ψ, the

Fresnel phase, by finding the stationary azimuth angle in the ϕ integral about some critical point ϕ = ϕs gives

T̂ (ρ0) =
1− i

2F

∫ ∞

−∞
T (ρ) exp(iψ(ρ0, ϕ0; ρ, ϕs))dρ, (4)

where

F =

√
λD

2

1− cos2B sin2 ϕ0

sin2B
(5)

is the Fresnel scale (Marouf et al. 1986). To recover an approximate inverse transform, we replace the plane of integra-

tion from the (ρ, ϕ) plane to the (ρ0, ϕ0) plane, and take the complex conjugate of the Fresnel kernel. Consequently,

the forward-kernel factor
1− i

2F
exp(iψ(ρ0, ϕ0; ρ, ϕs)) (6)

is replaced by its conjugate,
1 + i

2F
exp(−iψ(ρ0, ϕ0; ρ, ϕs)), (7)

thereby defining the desired approximate inverse operation.

The accuracy of the diffraction-limited reconstructed profile is highly dependent on the Fresnel phase ψ. Explicitly,

following Marouf et al. (1986), ψ is given by

ψ(ρ0, ϕ0; ρ, ϕ) = kD[
√

1 + 2ξ + η − (1 + ξ)], (8)

where

ξ =
cosB(ρ0 cosϕ0 − ρ cosϕ)

D
, (9)

η =
ρ20 + ρ2 − 2ρρ0 cos(ϕ− ϕ0)

D2
, (10)

and

D = ∥R− ρ0∥. (11)

Since ψ is proportional to the wavenumber k, which in practice is very large, even slight deviations in ξ and η that

characterize the transverse and longitudinal offsets between source and receiver can produce significant differences in

the phase term.

3.2. Practical Considerations for Reconstruction

Having established the theoretical basis for reconstructing ring transmittance, we now address several practical

factors that influence the accuracy and utility of such reconstructions. We first review several key concepts and

terms relevant to radio occultation analyses with Cassini RSS. The normal optical depth quantifies the attenuation

of incident radiation by ring material when viewed in the normal direction to the ring plane and serves as a direct

measure of particle column density. Cassini radio observations were conducted in three wavelength bands—Ka (λ ∼ 0.9

cm), X (λ ∼ 3.6 cm), and S (λ ∼ 13 cm)—each of which probes different particle-size regimes. Occultation tracks are

classified as ingress-egress, in which the spacecraft’s line of sight cuts straight across the rings in the east-west direction
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8 Guo & Xu

as viewed on the sky from Earth, so that the track is approximately in the radial direction, from chord occultations,

which transect the rings as viewed from the Earth, more vertically in the north-south direction. Throughout this

study, we refer to individual observations by their Cassini revolution (“Rev”) number, wavelength band designation

(Ka or X), and DSN number, which denotes the specific Earth-based radio telescope that received the signal.

The applicability of the reconstruction methods depends strongly on the width of the processing window W , since

the Fresnel phase ψ continually varies over the radial range. Specifically, smaller values of W make lower-order

approximations of ψ more feasible. The particular value of W is derived from F and the processing resolution, ∆Rw,

given by Eq. (11) in Marouf et al. (1986). In addition, at low-numbered Revs, the magnitude of the ring opening

angle B was close to its maximum of ∼ 26.7◦, equal to the relative tilt of Saturn’s rotational axis to the ecliptic plane.

As the Rev numbers increase, |B| decreases, causing F to increase dramatically in turn (PDS Rings Node 2025). The

result is that later occultations are much less forgiving to approximation errors in ψ. The signal’s wavelength also
plays a significant role in determining the window size W . For identical geometry and processing resolution, W scales

linearly with the radio wavelength λ; thus, the window size for the Ka band is approximately a quarter of that for the

X band in the same observation.

Larger window widths will inevitably lengthen both forward modeling and inversion time. In using the standard

forward model in radio occultation reconstructions as the Fresnel transform, evaluating the convolution with standard

Fourier transform techniques is O(N logN), where N ≈ W/∆Rw is the number of samples of a window of width W

sampled at a resolution of ∆Rw. Practically, doubling W approximately doubles the run time for a fixed ∆Rw.

The occultation geometry also governs the conditions under which each type of wave can be most effectively detected.

Density waves benefit from larger |B| as the signal-to-noise per radial sample is typically higher, so radial compressions

and rarefactions are sampled more cleanly. On the other hand, bending and vertical waves produce out-of-plane

displacements and tilts of the local ring plane. Those vertical corrugations modulate the slant column density and

phase most strongly when the line of sight skims the plane, that is, at smaller |B|. The azimuth angle ϕ also plays

a key role. Depending on whether the line of sight crosses the corrugations perpendicular or parallel to their crests,

the modulation strength can vary greatly. This combined dependence is captured by the effective ring opening angle,

Beff , given by

tanBeff =
tanB

cosϕ
. (12)

When ϕ is close to 0◦ or 180◦, the line of sight is perpendicular to the wave crests, making vertical displacements

easier to detect. In practical terms, density waves are best observed at high |B|, corresponding to the early Cassini

revolutions when the rings were more open, while bending waves are most clearly observed at low |B| during later

Revs, especially when |Beff | is minimized.

4. OBSERVATIONS AND METHODS

In this section, we evaluate four distinct methods used in the diffraction-based reconstruction of Saturn’s ring

optical depth profiles from Cassini RSS occultation data. Each method is characterized by the level of approximation

used in representing the Fresnel phase ψ(ρ0, ϕ0; ρ, ϕs). Specifically, we compare the existing approach using the

traditional Fresnel quadratic approximation with three new techniques we have developed: a full Newton–Raphson

scheme enhanced with a modification to the Filon quadrature method and two higher-order Lagrange interpolation

variants. For each approach, we outline the underlying mathematical basis and assess its computational efficiency. We

also introduce the observational dataset used in this study, followed by direct comparisons of reconstructed profiles

that highlight how these approaches differ in recovering fine-scale ring structure.

4.1. Approximation via the Fresnel Quadratic

As described by Marouf et al. (1986), the Fresnel reconstruction method provides a simple approach to approximate

the Fresnel phase to be used in the diffraction reconstruction integral for T̂ (ρ0) using a quadratic approximation. In
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High-resolution C ring radio reconstruction 9

this method, the stationary azimuthal angle ϕs is estimated using a tangent line approximation equivalent to a single

iteration of the Newton-Raphson method using ϕ0 as the initial estimate. Then, ψ is expanded about this first-order

estimate ϕs,1, retaining only up to the quadratic term. As a result, we obtain the following quadratic approximation

for the phase:

ψ(ρ0, ϕ0; ρ, ϕs,1) ≈
π

2

(
ρ− ρ0
F

)2

, (13)

where F is the Fresnel scale (Marouf et al. 1986).

Due to its simplicity, this method is the least computationally intensive of those we investigate, as reflected in the

comparison of execution times found in Table 2. However, this simplicity comes at the cost of accuracy in certain

situations. For instance, when the opening angle of the ring B decreases in the later Revs, the Fresnel scale increases

greatly, causing the width of the required window of integration, W , to become extremely large. A similar effect is

observed as the processing resolution of the reconstruction becomes finer. At such large processing windows, sometimes

spanning thousands of kilometers, a quadratic approximation is insufficient to accurately reconstruct ring profiles.

4.2. Approximation via Newton-Raphson

Our novel Newton reconstruction method provides a refined alternative to the Fresnel quadratic approximation

by evaluating the Fresnel phase ψ(ρ0, ϕ0; ρ, ϕs) exactly rather than through low-order expansions. The stationary

azimuthal angle ϕs is determined through multiple iterations of the Newton–Raphson method, yielding a converged

solution rather than a first-order estimate. Moreover, prior reconstruction methods, most notably the Fresnel method,

adopt the following simple estimate for ψ′′ given by

ψ′′
s ≈ kD(1− cos2B sin2 ϕ0)

(ρ0
D

)2

, (14)

as shown in equation (A3-c) of Marouf et al. (1986). However, at later Revs and higher resolutions, such an estimation

yields spurious transmittance profiles, undermining the accuracy of the reconstructed radial structure. Instead of using

such approximations for ψ′′, the Newton reconstruction method computes the exact value of ψ′′.

To do so, instead of assuming a constant value of D = ∥R − ρ∥, we now let (x, y, z) be independent variables

corresponding to the Cassini’s location relative to the center of Saturn and ρ = (ρ cosϕ, ρ sinϕ) the coordinates of the

ρ vector. Then, we write

∥R− ρ∥ =
√
(x− ρ cosϕ)2 + (y − ρ sinϕ)2 + z2, (15)

and compute ψ′′ with the multivariable chain rule, where ψ is given explicitly as:

ψ = k

[
∥R− ρ∥ − R− ρ0

∥R− ρ0∥
· (R− ρ)

]
. (16)

This approach ensures that the Fresnel phase fully accounts for the true spacecraft-ring geometry at each sampling

point across the processing window, yielding fine-scale reconstructions that, in the absence of noise and under the

assumption that the ring structure is well approximated as one-dimensional, can robustly recover ring features even

in the most extreme occultation geometries. While this method’s reliance on the exact evaluation of ψ′′ and full

incorporation of the instantaneous spacecraft-ring geometry incur a significant increase in computation time, the

resulting reconstructions exhibit dramatically reduced errors which thereby enable quantitative analyses of fine-scale

radial structures unattainable with traditional low-order approximations.

Finally, we note that the actual inversion calculation requires evaluating a highly oscillatory integral, for which we

apply an adapted version of Filon’s quadrature method. The details and justification of this approach is discussed in

more detail in Section 5.

4.3. Approximation via Octic and Hexadecic Interpolation

In Marouf et al. (1986) a fourth-order polynomial approximation for ψ is obtained by fitting computed values of ψ over

the window width W . This allows for T (ρ) to retain its convolution properties and result in efficient reconstruction
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10 Guo & Xu

using fast Fourier transform techniques. At resolutions approaching 200 m, however, a polynomial of fourth-order

ceases to adequately capture the true transmittance profile of the ring. To account for the inadequacy of a uniform

fourth-order fit at these resolutions, we introduce a more accurate kernel representation by fitting ψ over a greater

number of points across the window. In this method, the stationary azimuthal angle is found in the same way as in our

Newton reconstruction method. In particular, we develop eighth and sixteenth-order approximations for ψ by using

the Lagrange interpolating polynomials

ψ =

8∑
n=1

Cn(ρ− ρ0)
n and ψ =

16∑
n=1

Cn(ρ− ρ0)
n.

It is important to emphasize that coefficients Cn are not fixed constants as in a conventional interpolating polynomial,

but rather depend on the changing geometric parameters ϕs, ϕ0, ρ0, B, and D. The derivation of the coefficients Cn
can be found in Appendix A.

4.4. Summary of Observational Dataset

The table below lists each ring feature selected for high-resolution reconstruction in this study, along with the specific

Cassini RSS observations used to examine each target. Each RSS observation is labeled by a three-digit revolution

number, occultation direction (I for ingress or E for egress), wavelength band (S, X, or Ka), and DSN number. The

letter “W” found at the beginning of some feature names, such as “W74.93” and “W74.94”, specifically refers to a

wave feature, and the number following indicates the radial location in thousands of kilometers.

Observation Feature Name Feature Type Radial Range (km) B Beff

Rev007E X43 Maxwell Ringlet OLR / Ringlet 87480–87560 −23.57◦ 53.16◦

Rev125I X34 Titan −1:0 IVR 77530–77610 4.77◦ 15.61◦

Rev125I X34 Titan −1:0 (inner) IVR 77530–77565 4.77◦ 15.61◦

Rev125I X34 W74.93, W74.94 OVR 74930–74950 4.77◦ 15.70◦

Rev133I X25 C ring ripples — 77700–77750 1.88◦ 9.21◦

Rev133E X43 W80.98 OLR 80960–81000 1.88◦ −12.30◦

Table 1. Summary of Cassini RSS occultations and ring features examined in this study. For each observation,
the revolution, direction, and band are given, along with the feature name, type, analyzed radial range, ring opening angle B,
and effective opening angle Beff .

4.5. Comparison of Reconstruction Methods

In order to evaluate the accuracy of the reconstruction methods, we present normal optical depth profiles for the

spiral density wave W80.98 (Colwell et al. 2009; Hedman & Nicholson 2013) using data from the Rev133E X43

observation. This particular observation is notable for its exceptionally small ring opening angle, which imposes a

stringent test on the accuracy of each method’s phase approximation due to the large Fresnel scale F ≈ 10 km as a

result. For each method, we plot reconstructions spanning resolutions from 1 km, equivalent to the available PDS

archive results, down to 100 m, representing an order-of-magnitude improvement. Within these plots, “Newton8”

refers to the octic interpolation method, and “Newton16” refers to the hexadecic interpolation method. Each plot

contains a four-panel comparison of the normal optical depth profile as a function of radial position for W80.98, with

the Fresnel reconstruction shown in the top left, octic reconstruction in the top right, hexadecic reconstruction in

the bottom left, and the Newton reconstruction in the bottom right. Throughout this section, we use the Newton

reconstruction as the reference for relative comparison, as it involves the fewest mathematical simplifications in the

process. The direct validation of the Newton method’s absolute accuracy for this observation at 100 m resolution will

be presented in the following section.20
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High-resolution C ring radio reconstruction 11

We begin by comparing reconstructions of W80.98 at resolutions of 1000 m, 500 m, 300 m, and 200 m, shown in

Figure 2.

Figure 2. Comparison of four reconstruction methods applied to W80.98 for resolutions between 1 km and 200 m (Rev133E
X43)

The key result is that the Fresnel quadratic approximation produces profiles that are visibly inaccurate even at

1 km resolution; the reconstructed structure deviates significantly from those obtained with our new methods across

all spatial scales. Meanwhile, the octic reconstruction is identical to the Newton-based reconstruction down to 300 m.

Minor differences, such as subtle discrepancies in peak heights around 80975–80977 km, only begin to appear in the octic

profile at 200 m resolution. However, the overall structure remains well preserved, with a root mean square deviation

(RMSD) in τ of approximately 0.005. Notably, the hexadecic and Newton reconstructions remain indistinguishable

even at 200 m, providing strong evidence for the reliability of these higher-order methods at this resolution.

Given the near-indistinguishability of the three Newton-based methods at coarser resolutions, we also present re-

constructions of W80.98 from 300 m down to 100 m (Figure 3). The full Newton reconstruction maintains a cleanly

structured, well-defined profile across all examined radial resolutions. In contrast, both the octic and hexadecic inter-

polations produce reconstructions with a pronounced stability breakdown at 100 m resolution: their profiles become

overwhelmingly noisy and frequently dip below zero optical depth, rendering them unusable. Nonetheless, the octic

interpolation remains reliable down to resolutions of 150 m, as any deviations compared to the Newton reconstruc-

tion remain small (τ RMSD ≈ 0.01). However, at 125 m, accuracy degrades significantly, with very little structure

being accurately retained. The hexadecic interpolation improves the achievable resolution limit as it maintains close

agreement with the Newton solution down to 125 m (τ RMSD ≈ 0.00557).
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12 Guo & Xu

Figure 3. Comparison of four reconstruction methods applied to W80.98 for resolutions between 300 m and 100 m (Rev133E
X43)

While we have shown that the full Newton-based reconstruction method is required for the most extreme occultation

geometries or the highest resolutions, it is considerably more computationally intensive than other approaches. Table 2

summarizes these computational tradeoffs for processing the Huygens gap, spanning approximately 400 km, on the

same Rev133E X43 observation. For general use cases with moderate opening angles, resolutions above 125–150

m, or wide radial ranges, the octic and hexadecic interpolation methods offer a compelling alternative: they deliver

reconstructions that are dramatically more accurate than the Fresnel quadratic approximation, with only a two- to

three-fold increase in processing time relative to Fresnel. In comparison, the full Newton method is 20–30 times slower

than Fresnel.

Reconstruction Method Processing time (seconds)

Fresnel 16

Octic Interpolation 36

Hexadecic Interpolation 41

Newton 419

Table 2. Execution time for processing the Huygens gap at 125 m resolution (Rev 133E, X43) using various
reconstruction methods. Benchmarks were performed on a machine with 64 GB RAM, AMD Ryzen 9 3900X CPU, running
on Debian GNU/Linux 12.
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High-resolution C ring radio reconstruction 13

5. FORWARD MODEL VALIDATION

While the preceding analysis in Section 4.5 treated the Newton reconstruction method as the reference for bench-

marking other approaches, its absolute accuracy has not yet been rigorously established. To address this, we now

undertake a direct validation of the Newton-based reconstructions by applying a forward model.

The Fresnel forward and inverse transforms given in Marouf et al. (1986) rely on several approximations, many of

which decrease the validity of reconstruction and accuracy verification. Here, we provide a new and improved forward

model using fewer approximations on the Fresnel phase, but still retaining the convolution property of the integral, in

order to ensure the possibility of an analytical inverse. We then use this forward and inverse model on a perfect left

straightedge at 100 m resolution with real occultation geometry to validate the accuracy of our reconstructions.

Unlike the ideal geometry assumed in Marouf et al. (1986), where û · ŷ = 0, we instead compute the full Fresnel

kernel. Here,

û =
R− ρ0

∥R− ρ0∥
(17)

represents the normalized relative position vector of R with respect to ρ0. To retain accuracy, we keep ρ,ρ0, and R

as vectors in Cartesian form.

As in Section 3.1, we model the diffraction pattern seen by a radio wave passing through a thin screen using the

Rayleigh-Sommerfeld equation, obtained from the wave equation. Adopting notation from Section 3.1, writing out

Eq. (2) in its entirety gives the following for T̂ :

T̂ (ρ0) =
µ0

iλ

∫∫
S

T (ρ)
exp (ik(û · (ρ−R) + ∥ρ−R∥))

∥R− ρ∥
dρ, (18)

where ρ is the integration variable, and ρ0 denotes the point at which the observer–source line of sight intersects the

screen S. Substituting Eq. (16) into Eq. (18) yields the forward model

T̂ (ρ0) =
µ0

iλ

∫∫
S

T (ρ)
exp(iψ(ρ,ρ0,R))

∥R− ρ∥
dρ. (19)

Assuming radial symmetry of the transmittance, T (ρ) = T (ρ), and working in polar coordinates with ρ = (ρ, ϕ) and

ρ0 = (ρ0, ϕ0), the integral reduces to

T̂ (ρ0) =
µ0

iλ

∫ ∞

0

ρT (ρ)

∫ 2π

0

exp(iψ(ρ,ρ0,R))

∥R− ρ∥
dϕdρ. (20)

Applying the stationary phase approximation to the ϕ-integral collapses the double integral to a single integral without

compromising the accuracy of the model:

T̂ (ρ0) ≈
1− i

2F

∫ ∞

0

T (ρ) exp(iψ(ρs,ρ0,R))dρ, (21)

where ρs = (ρ, ϕs) with ϕs the stationary azimuth angle. A more detailed derivation for the simplification of the

double integral can be found in Appendix B. Under the classical Fresnel approximation for ψ(ρs,ρ0,R), one obtains

an explicit inverse. By analogy, we obtain the following approximate inverse for Eq. (21):

T (ρ) ≈ 1 + i

2F

∫ ∞

0

T̂ (ρs) exp(−iψ(ρs,ρ0,R))dρ0. (22)

In the forward model, R and ρ0 are held fixed while ρ varies. In practice, the observer may also move; because ρ0

depends on both the position vector R and the incidence direction of the incoming wave, the inverse formulation must

allow R to vary along with ρ0. Together, Eqs. (21) and (22) provide forward and inverse models which are robust at

the highest resolutions.
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14 Guo & Xu

For some high resolution reconstructions, the Fresnel phase ψ grows rapidly at the edge of the window of integration.

This causes exp(iψ(ρs,ρ0,R)) to be highly oscillatory. Unlike the azimuthal component, which was handled using the

stationary phase approximation, this integral over the radius has a small scale factor, roughly π/2F 2. Stationary phase

does not apply, and the simpler numerical integration techniques (Riemann sums, Simpson’s method, etc.) are poorly

suited for highly oscillatory integrals. To mitigate this, we have developed a modification of the Filon quadrature

method, applied to handle ψ in piece-wise linear sections. This new quadrature method is exact when the diffracted

data T̂ is piece-wise linear, and produces an accurate numerical integral for real data as well (i.e., the observed T̂
values).

Figure 4 depicts a plot of the forward and inverse model applied to an ideal left straightedge set to 1 to the left of

87500 km and 0 to the right of 87500 km. The plot corresponds to a 100 m resolution reconstruction for the Rev133E

X43 occultation.

Figure 4. Forward and inverse model for ideal left straightedge at 100 m resolution on Rev133E X43.

The forward model takes the ideal straightedge as input data and applies the perfect ideal Fresnel forward transform

given in Eq. (21) to produce the diffracted data T̂ (shown as the blue curve in Figure 4). The inverse model then takes

in the generated, diffraction-limited T̂ as input, and tries to reproduce T via the inverse transform given in Eq. (22).

The resulting reconstructed profile is shown as the orange curve.

Even at resolutions as high as 100 m, the new forward and inverse transforms validate the accuracy of the recon-

struction. The reconstructed data accurately retrieves the input data, with only a slight overshoot at the top of the

straightedge at 87500 km, and identical elsewhere. Notably, this agreement is achieved under the extreme geometry of

the Rev133 egress occultation, with a ring opening angle of B = 1.886◦, providing a stringent test of the model. Such

consistency confirms the fine-scale structure seen in our high resolution reconstructions in Section 6 is real.
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High-resolution C ring radio reconstruction 15

6. HIGHEST RESOLUTION RECONSTRUCTIONS

We utilize our new Newton reconstruction method to produce opacity profiles at multiple processing resolutions,

increased from the 1 km profiles archived on the PDS to the highest resolution of ∼ 55 m. In particular, we analyze

five morphologically unique structures within the C ring: the Maxwell ringlet, the Titan −1:0 nodal bending wave, a

pair of subtle bending waves, and the short wavelength C ring ripples.

6.1. Maxwell Ringlet

The first observation is plotted in Figure 5, displaying the reconstructed profile of the Maxwell ringlet for the

Rev007E X43 observation, at resolutions ranging from 1 km to 55 m. This density wave structure, believed to be

generated by internal oscillations within Saturn itself, provides valuable insights into the forces shaping the rings and

how these waves propagate and interact within such a system. Through our reconstructed profiles, we gain information

about the fine details and structure of this internally produced wave embedded in a ringlet, revealing resonances tied
to Saturn’s interior.

Figure 5. Reconstructed profiles of the Maxwell Ringlet on Rev007E X43 at resolutions from 1 km to 55 m20
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16 Guo & Xu

At 1 km and 500 m resolutions, the ringlet is a broad, smooth hump centered near 87520 km bounded by sharp

inner and outer edges located at ∼ 87480 km and ∼ 87550 km. In these reconstructions, the wave appears as four

smooth crests whose amplitude peaks near ∼ 87520 km.

As the radial resolution increases beyond 200 m, the central hump is revealed to consist of numerous narrow, sharply

defined spikes, with their spacing decreasing toward the resonance center. The persistence of nearly vertical boundaries

at the ringlet edges, even at 55 m resolution, further suggests that the Maxwell ringlet is sharply confined. At the

finest resolutions, some higher-frequency fluctuations become visible, especially in the densest region between 87510

km and 87530 km, consistent with the expected increase in noise with higher optical depths. In addition, the nearly

vertical edges at roughly 87480 km and 87550 km in the 55 m profile suggest very steep optical depth gradients at the

ringlet boundaries, whereas the 1 km profile suggests a more gradual transition. Taken together, the results indicate

a significant improvement in fine-scale structure to the currently available 1 km reconstructions.

6.2. Titan −1:0 IVR Bending Wave

Next, we examine the reconstructions of the Titan −1:0 nodal bending wave for the Rev125I X34 observation, shown

in Figure 6.

Figure 6. Reconstructed profiles of the Titan −1:0 bending wave on Rev125I X34, at resolutions ranging from 1 km to 57 m

Similar to the Maxwell Ringlet, progressively finer reconstructions transform the apparent structure of the Titan

−1:0 bending wave’s optical depth profile from smooth undulations into sharply defined peaks. At 1 km resolution,

peaks are smooth and blended. Though visible, wave features are indistinct. By 500 to 300 m resolution, the same

features begin to show more detail, with the contrast of vertical height between adjacent peaks increasing. Reaching

the highest resolutions, several peaks that were previously single become doublets or triplets.

Notably, the radial positions of major peaks remain the same across all reconstructions, indicating that the higher-

resolution products are adding spatial detail rather than shifting the underlying signal. To better qualitatively assess
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High-resolution C ring radio reconstruction 17

the benefits of high resolution reconstructions, we zoom into the inner region of the Titan −1:0 bending wave, around

a radial location of ∼ 77530–77565 km, as shown in Figure 7.

Figure 7. Reconstructed profiles of the inner region of the Titan −1:0 bending wave on Rev125I X34, at resolutions ranging
from 1 km to 57 m

The highest resolution reconstructions above of the Titan bending wave are highly significant and reveal a unique

advantage: we can now model in detail the vertical extent of the bending wave by looking for signatures of multiple

passages through wave crests, something infeasible with only 1 km profiles. The doublet and triplet cusps only seen

at higher resolutions in the optical depth profile convey information about the number of line-of-sight crossings of the

occultation ray through successive crests. This in turn will provide information about wave damping processes within

the ring, an important indicator of how ring particles interact in a disturbed ring.

6.3. W74.93 (OVR) and W74.94 (OVR)

We continue by analyzing the reconstructed profile of two vertical bending waves in close proximity, namely W74.93

and W74.94, also examined in French et al. (2019). Figure 8 shows the reconstructed profiles for the two waves for

the Rev125I X34 observation. At 1 km resolution, both waves are completely invisible, showing no structure and

hints of existing wave features. At 500 m resolution, only a singular subtle bump appears slightly outwards of the

resonance location of each wave, but is likewise nearly invisible. As resolution is pushed higher from 300 m to 150 m,

the bending waves start to take shape with low-amplitude undulations. When we reach sub-hundred meter resolutions,

the smooth undulations become a cluster of sharper peaks, most prominently in W74.94. These results show that a

single occultation can yield high-SNR, high-resolution reconstructions of subtle wave features beyond the prominent

cases like the Maxwell Ringlet and Titan −1:0 IVR we demonstrated previously, and indicate the potential for high

resolution radio reconstructions to clarify unclear wave features.
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18 Guo & Xu

Figure 8. Reconstructed profiles of W74.93 and W74.94 on Rev125I X34 at resolutions ranging from 1 km to 55 m

6.4. C Ring Ripples

The C ring ripples are the final feature for which we present high-resolution reconstructions. These short-wavelength,

low-amplitude vertical corrugations in Saturn’s inner C ring are distinguished by a characteristic “beating” pattern,

interpreted as the interference of multiple vertical modes with closely spaced frequencies. We include two reconstruc-

tions, one using the Fresnel approximation inversion method (Figure 9), and the other using the Newton inversion

method (Figure 10), both using the Rev133I X25 observation.

Figure 9. Reconstructed profiles of C ring ripples on Rev133I X25 from the Fresnel method at resolutions ranging from 300 m
to 70 m20
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High-resolution C ring radio reconstruction 19

Figure 10. Reconstructed profiles of C ring ripples on Rev133I X25 from the Newton method at resolutions ranging from 300
m to 70 m

Because of their subtle amplitude and sub-kilometer scale, the ripples represent a stringent test for a reconstruction

method, particularly under the extreme geometry of Rev133I X25. Resolving this structure requires a high signal-

to-noise ratio making the ripples an ideal benchmark. The Fresnel quadratic approximation produces featureless and

noisy profiles at all resolutions, failing to reveal either the short-wavelength oscillations or the characteristic beating

pattern expected from the superposition of vertical modes. In contrast, the Newton-based reconstruction (Figure 10)

recovers clear periodic modulations and reproduces the anticipated beating pattern across all examined resolutions,

from 300 m to 70 m. Notably, this fine-scale structure is resolved despite the extremely small amplitude of the signal,

with normal optical depth variations below 0.05 throughout the region.

7. DISCUSSION AND CONCLUSION

In this paper, we introduce and validate a novel diffraction inversion technique capable of reconstructing Saturn’s ring
transmittance profiles from Cassini RSS radio occultations at radial resolutions down to 55 m. Our primary advance

is a high-resolution reconstruction technique that, rather than relying on standard polynomial approximations, retains

the full Fresnel phase ψ of the diffraction integral and computes the stationary azimuthal angle ϕs using the Newton-

Raphson method, forgoing many geometric assumptions in the process. To accurately compute the integral over the

radius, involving the often highly oscillatory Fresnel kernel, we also incorporate a modification of the Filon quadrature

method, accurately integrating real data numerically.

In addition to this Newton-Raphson method, we develop two simpler variants, namely octic and hexadecic Lagrange

interpolations of the Fresnel phase, which strike a balance between accuracy and computational efficiency. These vari-

ants yield profiles nearly indistinguishable from the Newton approach under the most extreme occultation geometries

at resolutions approaching 100 m, still representing nearly an order-of-magnitude improvement over the current best

available 1 km optical depth profiles archived in the NASA PDS.

Applying these techniques to the Maxwell ringlet, the Titan −1:0 bending wave, a pair of subtle OVR features

(W74.93 and W74.94), and short wavelength C ring ripples, demonstrates the breadth of phenomena that can be

newly accessed at high resolution. These applications reveal how previously unresolved fine-scale features become

accessible, accentuating the underlying structure of subtle or ambiguous wave signals.
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20 Guo & Xu

One of the most significant scientific benefits of our high-resolution approach is the newfound ability to directly probe

the vertical extent and fine structure of bending waves. For example, sub-100 m reconstructions resolve multiple line-

of-sight crossings within a single bending wave, offering constraints on the wave’s vertical extent, information unique

to RSS among all three of Cassini’s occultation instruments (VIMS, UVIS, RSS) and unattainable at kilometer-scale

resolution. These advances motivate future investigations involving the analysis of of multiple occultation profiles of

a single bending leveraging the differing geometries to construct three-dimensional models of bending wave structure

and to probe vertical damping processes across Saturn’s rings.

Several predicted outer vertical resonance (OVR) locations in the C ring currently remain devoid of any detectable

wave signatures (French et al. 2021). Previous work using VIMS data has demonstrated that phase-corrected wavelet

techniques, which co-add multiple stellar occultation profiles, can reveal even extremely subtle wave signatures that

are undetectable in individual profiles (French et al. 2021). With our progress in high-resolution radio occultation
reconstructions, there is now an opportunity to further enhance the sensitivity of such searches. By integrating

these approaches, future studies may be able to systematically survey predicted resonance locations and uncover new,

previously hidden waves.

Ultimately, our advances in diffraction reconstruction bring us closer to realizing the full scientific utility of the

Cassini RSS dataset, propelling the field of Kronoseimology, and the overall understanding of Saturn’s rings.
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APPENDIX

A. DERIVATION OF COEFFICIENTS FOR HIGHER-ORDER POLYNOMIAL FITS FOR ψ

We extend the fourth degree Lagrange interpolated polynomial for ψF in Marouf et al. (1986) to degree eight.

Appendix A of Marouf et al. (1986) provides a fourth order polynomial approximation by matching ψF to ψ at four

points symmetric about the desired radius ρ, namely, the two midpoints ρ ±W/4 and the two endpoints ρ ±W/2.

For our eighth degree approximation, we select eight equidistant points symmetric about ρ, spanning from ρ− W
2 to

ρ+ W
2 , given by

ρ± W

2
, ρ± 3W

8
, ρ± W

4
, ρ± W

8
. (A1)

We wish to determine the coefficients C1, . . . , C8 for which

ψF =

8∑
n=1

Cn(ρ− ρ0)
n (A2)

holds. For each a ∈ {W/2, 3W/8,W/4,W/8}, denote

ψ(a) =
1

2
[ψ(a) + ψ(−a)], (A3)

∆ψ(a) = ψ(a)− ψ(−a). (A4)20
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High-resolution C ring radio reconstruction 21

For brevity, we write ψ1 = ψ(W/2), ∆ψ1 = ∆ψ(W/2), and similarly denote ψ2, ∆ψ2, ψ3, ∆ψ3, ψ4, ∆ψ4, for ψ(3W/8),

∆ψ(3W/8), ψ(W/4), ∆ψ(W/4), ψ(W/8), ∆ψ(W/8), respectively. Substituting values into the ψF , we obtain the

equations

C1

(
W

2

)
+ C3

(
W

2

)3

+ C5

(
W

2

)5

+ C7

(
W

2

)7

=
∆ψ1

2
, (A5)

C1

(
3W

8

)
+ C3

(
3W

8

)3

+ C5

(
3W

8

)5

+ C7

(
3W

8

)7

=
∆ψ2

2
, (A6)

C1

(
W

4

)
+ C3

(
W

4

)3

+ C5

(
W

4

)5

+ C7

(
W

4

)7

=
∆ψ3

2
, (A7)

C1

(
W

8

)
+ C3

(
W

8

)3

+ C5

(
W

8

)5

+ C7

(
W

8

)7

=
∆ψ4

2
(A8)

for terms of odd order, and

C2

(
W

2

)2

+ C4

(
W

2

)4

+ C6

(
W

2

)6

+ C8

(
W

2

)8

= ψ1, (A9)

C2

(
3W

8

)2

+ C4

(
3W

8

)4

+ C6

(
3W

8

)6

+ C8

(
3W

8

)8

= ψ2, (A10)

C2

(
W

4

)2

+ C4

(
W

4

)4

+ C6

(
W

4

)6

+ C8

(
W

4

)8

= ψ3, (A11)

C2

(
W

8

)2

+ C4

(
W

8

)4

+ C6

(
W

8

)6

+ C8

(
W

8

)8

= ψ4 (A12)

for terms of even order. Solving both systems, we obtain the coefficients

C1 =
672∆ψ1 − 168∆ψ2 + 32∆ψ3 − 3∆ψ4

105W
, (A13)

C2 =
4
(
8064ψ1 − 1008ψ2 + 128ψ3 − 9ψ4

)
315W 2

, (A14)

C3 =
16 (−488∆ψ1 + 338∆ψ2 − 72∆ψ3 + 7∆ψ4)

45W 3
, (A15)

C4 =
64

(
−1952ψ1 + 676ψ2 − 96ψ3 + 7ψ4

)
45W 4

, (A16)

C5 =
2048 (29∆ψ1 − 26∆ψ2 + 9∆ψ3 −∆ψ4)

45W 5
, (A17)

C6 =
8192

(
116ψ1 − 52ψ2 + 12ψ3 − ψ4

)
45W 6

, (A18)

C7 =
65536 (−14∆ψ1 + 14∆ψ2 − 6∆ψ3 +∆ψ4)

315W 7
, (A19)

C8 =
262144

(
−56ψ1 + 28ψ2 − 8ψ3 + ψ4

)
315W 8

, (A20)

used in the octic Lagrange interpolation of ψ. The coefficients for the 16th degree interpolating polynomial are

calculated in a similar fashion.

B. SIMPLIFYING INTEGRAL WITH STATIONARY PHASE APPROXMATION

We provide the full derivation for collapsing the double integral

T̂ (ρ0) =
µ0

iλ

∫ ∞

0

ρT (ρ)

∫ 2π

0

exp(iψ(ρ,ρ0,R))

∥R− ρ∥
dϕdρ (B1)
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to

T̂ (ρ0) ≈
1− i

2F

∫ ∞

0

T (ρ) exp(iψ(ρs,ρ0,R))dρ, (B2)

going from Eq. (20) to Eq. (21). We apply the stationary phase approximation on the ϕ integral about some critical

point ϕ = ϕs, the solution to ∂ψ/∂ϕ = 0. It follows∫ 2π

0

exp(iψ(ρ,ρ0,R))

∥R− ρ∥
dϕ ≈

∫ ϕs+ε

ϕs−ε

exp(iψ(ρs,ρ0,R))

∥R− ρs∥
dϕ (B3)

≈
∫ ϕs+ε

ϕs−ε

exp
(
i(ψ(ρs,ρ0,R) + 1

2ψ
′′(ρs,ρ0,R)(ϕ− ϕs)

2
)

∥R− ρs∥
dϕ. (B4)

Applying a change of variables u =
√

ψ′′

2 (ϕ− ϕs)
2, the integral further reduces to

exp(iψ(ρs,ρ0,R))

∥R− ρs∥

√
2

ψ′′

∫ ∞

−∞
exp(iu2)du =

exp(iψ(ρs,ρ0,R))

∥R− ρs∥

√
2

ψ′′

∫ ∞

−∞
cos(u2) + i sin(u2)du (B5)

=
exp(iψ(ρs,ρ0,R))

∥R− ρs∥

√
2

ψ′′

(
2

∫ ∞

0

cos(u2) + i sin(u2)du

)
(B6)

=
exp(iψ(ρs,ρ0,R))

∥R− ρs∥

√
π

ψ′′ (1 + i). (B7)

Substituting this expression back into the original double integral, we obtain

µ0

iλ

∫ ∞

0

ρT (ρ)
exp(iψ(ρs,ρ0,R))

∥R− ρs∥

√
π

ψ′′ (1 + i)dρ =
(1− i) sinB

λ

∫ ∞

0

ρT (ρ)
exp(iψ(ρs,ρ0,R))

∥R− ρs∥

√
π

ψ′′ dρ. (B8)

Writing ψ′′ as it comes from the Rayleigh-Sommerfeld equation

ψ′′(ρs,ρ0,R) =
F 2 sin2(B)4πρ2

λ2∥R− ρs∥2
, (B9)

Eq. (B8) becomes

(1− i) sinB

λ

∫ ∞

0

ρT (ρ)
exp(iψ(ρs,ρ0,R))

∥R− ρs∥

√
λ2∥R− ρs∥2

4F 2 sin2Bρ2
dρ =

1− i

2F

∫ ∞

0

T (ρ) exp(iψ(ρs,ρ0,R))dρ, (B10)

completing the derivation.
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