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POINTS
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ABSTRACT. Originating from the study of the intersection of two plane curves, intersection
theory has developed into a prominent field in modern algebraic geometry. The intersection
theory of the moduli space of curves was initiated by Mumford in the 1980s andrattracted-a
large amount of attention due to Witten’s discovery of its connections to integrable systems,
as well as its many applications in string theory and enumerative geometry.

The main subject of this paper is the expression of descendentintegrals‘on moduli spaces
of curves as lattice point counts of a polytope. This relation was first established by Afandi
through Ehrhart theory in discrete geometry, as well as a kind of pelynomiality property of
descendent integrals due to Liu-Xu.

Our work strengthens Afandi’s theorem by dropping a/genus shift_in-the assertion and,
at the same time, by presenting a more succinct statement..Our proof is an induction using
the DVV formula. The main technical difficulty lies in proving an inequality by using the
Leibniz rule for finite differences and using Eynard-Orantin theory to-show the positivity of
normalized 3-point functions.
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1. INTRODUCTION

The roots of intersection theory arise from the classical problem of determining the in-
tersection of two plane curves, or more generally, of multiple algebraic hypersurfaces.in n-
dimensional space. Isaac Newton investigated this problem in his Principia. It was later
formulated as the celebrated Bézout’s theorem.

Theorem 1.1 (Bézout’s theorem). Let C; and Cs be two projective plane curves of degrees
m and n, defined over an algebraically closed field F'. Then they intersect at exactly mn
points, counting multiplicities.

Pliicker’s notion of the class of a curve was an application of Bézout’s theorem. The class
of a plane curve C is defined as the number of tangents to C' through a“point @. Pliicker
gave an explicit formula for the class of plane curves. Let F(x,y, z): be the homogeneous
polynomial defining C', pick Q = (a : b : ¢). Define the polar curve-Cq by:

oF OF oF

F = ol 10 el
oz, vy, 2) a8x+b8y+63z

This definition ensures that a nonsingular point on C'is on Cg if and only if the tangent line
to C' at that point goes through ). On the other hand, since partial derivatives vanish at
singular points, all singular points of C' are on € The number-of points where C' and Cg
intersect, which can be expressed in terms of degreewusing Bézout’s theorem, is a combination
of the class of C' and the singular points of C, explicitly

#C NCg = deg Cdeg Cg = n(n— 1) = class(C) + #singular points

where n is the degree of C.

Pliicker’s first formula reveals that ordinary nodes eontribute 2 intersection points (with
intersection multiplicity 2), and ordinary cusps.contribute 3 points (with intersection multi-
plicity 3).

n(n— 1) =.class(C) 4+ 26 + 3k
where n is the degree of C, ¢ is the number.of ordinary nodes and & is the number of ordinary
cusps.

In 1847 Salmon obtained an analogous formula for surfaces. Let S C P3 be a surface, then
the degree of the dual surface SY (now called the second class) is the number of points P
on S such that the tangent plane at.P contains a general line [. However, different from the
case of plane curves, there is'the problem of excess intersection when analyzing contributions
of singular points. Specifically;*when the surface S is singular along a curve C, Salmon
calculated'the contributions when C'is a line, a double line and general curves.

On the other hand, Chasles, de Jonquiéres and many mathematicians avoided the issue of
excess intersections by calculating intersections only on certain special spaces.

Later, Severi’ developed a procedure for calculating intersection multiplicity, which was
corrected and completed by Lazarsfeld and Macaulay.

The modulisspace of curves was first studied by Riemann. Nowadays, it lies at the center
of the confluence of algebraic geometry, number theory and mathematical physics. In the
past few.decades the subject has also gained importance with input from string theory.

In‘this paper, we will touch upon only one aspect of moduli space of curves — intersection
theory - and explore its connection with Ehrhart theory.

In the early 1990s, Witten’s conjecture [17], first solved by Kontsevich [11], invigorated the
study of intersection theory on moduli spaces by connecting it with integrable systems. The
Witten-Kontsevich theorem enabled intersection numbers involving ¥ classes, or descendant
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integrals, to be calculated via a recursion formula. This is the starting point of modern
enumerative geometry or Gromov-Witten theory, which culminated in the solution of the
long-standing enumeration problem of rational curves on Calabi-Yau manifolds, by Lian-Liu-
Yau [12] and Givental [§] independently.

Recently, Afandi [I] established a very interesting connection between intersection numbers
on the moduli space of curves and Ehrhart theory — the polynomiality occurs simultaneously
in intersection theory and counting lattice points in a polytope. For more related‘works, see
[9, 10, 14, 18].

In this paper, we briefly review the Witten-Kontsevich theorem as well as Ehrhart theory.
After that, we prove a strengthening of Afandi’s theorem [I] in Sections{d}6}

2. INTERSECTION NUMBERS AND THE WITTEN-KONTSEVICH THEOREM

Let ﬂg,n be the moduli space of stable n-pointed genus g complex algebraic curves. Denote
by 7 the morphism that forgets the last marked point

T Mgny1 — Mgn.

Denote by o1,...,0, the canonical sections of 7., Let w, be the relative dualizing sheat.
There are three families of tautological classes on M .

Yi=ci(of(wr));, 1<i<n

Ri = Ty (1#:#1)

Ak:Ck(E)’ 1 §k§g7

where E = 7, (wy) is called the. Hodge bundle.

Intuitively, 1; is the first Chern. class of the line bundle whose fiber is the cotangent space
of the curve at the i-th marked point andthe fiber of [E is the space of holomorphic one-forms
on the algebraic curve.

We adopt Witten’s notation for/intersection numbers:

k k d n k k
(Tay -+ Ta, Kay eilay, | AP XG7) = / P kg, AP
Mg,n

These are also called Hodge, integrals, which are rational numbers, and their total degrees
should add up to dimﬂg,n =39 —3+n.

Intersection numbers of pure v classes (74, ---74,) are often called descendent integrals.
Intersection numbers of pure x classes (kq, - - - Kq,,) are called higher Weil-Petersson volumes.
Integrals of 1 class (ﬁi’g —3+n>g’n are the classical Weil-Petersson volumes.

The £ clagseson M, was first introduced by Mumford [16] and their generalization to

My, was dueto Arbarello-Cornalba [2].

2:1. Witten-Kontsevich theorem. In 1990, Witten [I7] conjectured that the generating
function of descendent integrals is governed by the KdV hierarchy. Witten’s conjecture was
firstwproved by Kontsevich [I1]. Kontsevich’s proof used a novel combinatorial description
of moduli spaces and Feynman diagram techniques. Now we have many different proofs of
the Witten-Kontsevich theorem due to Chen-Li-Liu, Kazarian-Lando, Kim-Liu, Okounkov-
Pandharipande, Mirzakhani.
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Witten’s motivation comes from two seemingly unrelated mathematical models that both
describe the physical theory of two-dimensional gravity: the counting of triangulations .of
surfaces via matrix integrals and the intersection theory of M, ,,. The partition function.of
the first model is known to obey the KdV hierarchy.

The KdV hierarchy is a family of differential equations labeled by n > 1,

8£ _ aRn-H

ot, Oty '
where R, are Gelfand-Dikii differential polynomials in U, U/dty, 0?U/Otgs. .+ defined re-
cursively by

R—U ORpy1 1 ou OR, 10°R,
1= oto 2n+1 \ 0ty oty A ot
The first few terms are given by
1 1 0°U
fa=oUt 5 ot2’
1 UdU 1,0U,. 1 90U
Ry =§U%+ 45 ot 21 a0 e

The Witten-Kontsevich theorem asserts that.the generating,function

(1) Flto,t1,...) = ZZ HT’“an.

is a 7-function for the KAV hierarchy, ie. U = 0>F/ 875(2) is a solution to all equations in the
KdV hierarchy. The first equation in the KdV hierarchy is the classical KdV equation

ou ou. 1 93U
oty Oty 12 9t}
In addition, F' obey the following string and dilaton equations

IF A 13 N, OF
Ers) Zz:%tzﬂati
OF 1 <<2i+1 OF
- = iy
ot 24 Z 3 ot

1=
2.2. Virasoro constraints. The Witten-Kontsevich theorem has an important reformula-
tion in terms of the Virasoro constraints.
Define a family of differential operators L for k > —1 by

1 j—I—k nHn 0
L 2k + 3)!! t;
k= 2( + 6 k+1 + = 9 pard ” jatj-i-k‘
1 0? Sk.—1t3 ko
=D 2d; + 1)!1(2dy + 1 ’ ’
"1 (21 + 1)K 2+)8td18td2+ TS

di+do=k—1
These.operators satisfy the Virasoro relations

[Lpny Lin] = (n —m)Lyym.
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Dijkgraaf, Verlinde, and Verlinde [4] proved that the KdV form of Witten’s conjecture is
equivalent to the following Virasoro constraints.

Proposition 2.1. (DVV formula) Let F be the generating function of descendent integrals
defined in (1)). We have Li(exp F) = 0 for k > —1. More explicitly,

1 z”: (2k + 2d; + 1)!!
2k + 3)!! (2d; — )N

(Tht1Tdy * Tdy ) g = ( (Tdy " Tdy4k " Tdn)g

1
+ 3 Z 2r + 1)M(2s + 1)1 7s7a, -+ Td, ) g—1
r4+s=k—1

+% > Crantes+)t 3w [y @] [ rade-s

rs=k—1 n=I]]Jw" i€l icd

The special cases of the DVV formula when k£ = —1 and'k = 0 are just the string and the
dilaton equation respectively.

n
The string equation: (ToTq, - - - Tdn>g = g (Tdy - " Tdpt - - .Tdn>g
i=1

The dilaton equation: (Ti7q, ...7Td,), = (2. =2+ n){7a, ... 74,),

Here is the closed formula for one-point/intersection numbers:

1
(Taa—2)g = 545,

When g = 0, there is the well-known identity:

n— 3

1
E le 2.2. = —
xample (T1)1 o

Example 2.3. (a73m70)g = (T17372)g +(T2ToT2) g + (T2T3T1) g = (ToTaTo)g + 49(T273)4
Example 2.4.
(7’47’57’5>g = (T3T570) g + (TaTaT0)g

= (TQT5>g + <7'3T4>g + 2(7’37’4>g

2.3. Hodge Integrals and Faber’s algorithm. Hodge integrals are intersection numbers
involving 1, £ and.\ classes on My ,,.

Faber’s algorithm [7] reduces the calculation of general Hodge integrals to those with pure
1pclasses.

The ELSV formula [5] relates single Hurwitz numbers to Hodge integrals.

Theorem 2.5 (ELSV formula). Let n =1(u) and r =29 — 2+ |p| + n. Then

n /,L‘,L’
H,, =r! < !

)/ 1= M\ 4+ (=1)9)
V) Jaa,., (L= panpr) -+ (1= pnthy)’
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The ELSV formula, as well as many Hodge integral identities can be derived from the
Marifio-Vafa formula [13].

As is well-known to experts, intersection numbers involving mixed 1 and k classes can.be
reduced to integrals of pure k classes or pure 9 classes by using the projection formula. For
example, the following formula reducing v class one at a time can be found in [I5].

Proposition 2.6. Let d, > 1, b = (b1, ba,...) € N where N is the semigroup of sé-
quences with nonnegative integers b; and b; = 0 for sufficiently large i. Define

/{(b)éH/{?"
1>1
Then b
om0y = 3 () R 1)
b

L+L/'=

2.4. An integer-valued polynomial. In [I4], Liu-Xu discovered genus polynomiality of
intersection numbers.

Theorem 2.7 ([I4, Theorem 4.1]). For any fized set d.= (d14 .+ 5dy,) of nonnegative integers
with |d| :==dy + - -+ + dy, the following function

(Tdy = Tdp T8 24n— |4 g1~
2) Piy,..dn(9) = — oo 209 T (2d; + 1)1
<7—39‘2>g i=1

is a polynomial in g with highest-degree.term 6/9gldl._Moreover, Py, ... a,(g) is integer-valued,
i.e., Py, . 4,(9) € Z whenever g € Z.

These polynomials Py, 4, (g). are determined uwiquely by the initial values Py(g) = Py, 0(g9) =
1 and the recursive relation

n

(3) Payoan(9) =D (2% 1) Pay . asdr 1, (9)

j=2
di
+ [1(6g + 20 2 Q)+ 27 < B) Py, 0, (9) + 129 Y Prsidadn(9 — 1)
7=1 r4+s=dy—2
7 g/
+ > 29 ]y [[o+1 =) Pea,(g - 9),
r+s=dy —2 el ]:1
I1[J={2, ,n}
where in the last term we used the normalized tau function
n
(Tay -+ 7a,)y = [ [(2di + D)N(7a, -+ 7a, ).
i=1

3. EHRHART THEORY AND AFANDI'S WORK

3.1. Ehrhart theory. For background and important theorems in Ehrhart theory, we follow
the book [3].
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Let P C R? be an integral convex d-polytope with vertices v1,...,v, € Z%, then
P = Conv(vy,...,v,) C RY.
For t € Z~, tP denotes the t" dilate of the polytope P C R¢
tP = Conv(tvy,...,tv,) = {tp : p € P}.
The lattice-point enumerator for the ¢ dilate of P C R? is defined as
Lp(t) := #(tP NZY).

The fundamental theorem concerning lattice-point enumeration, named.inshonor of ' Eugéne
Ehrhart, is the following.

Theorem 3.1 (Ehrhart’s Theorem). If P is an integral convex d-polytope, then Lp(t) is a
rational polynomial in t of degree d.

Lp(t) is called the Ehrhart polynomial of P.
Following [I], we define the notion of polytopal complexes and thé f*-vector of an integral
d-polytope.

Definition 3.2. A polytopal complex K is a finite collection of polytopes in R? satisfying the
following three properties:

(1) the empty polytope is in K,
(2) if P € K, then all the faces f of Pare-also in I,
(3) the intersection P N Q of two polytopes P, Q € K is a face of both P and Q.

The elements of K are called the faces of K. The dimension of K is the largest dimension of
the faces of K.

Definition 3.3. Let P be an integral convex d<polytope. The f*-vector of P is the unique
integer tuple (f3,..., f;) € Z4 Lsuch that

Loy~ kij;f; (t;1>

A generalization of the integral'd-polytope is the open d-polytope; it is the relative interior
of an integral d-polytope. We also generalize polytopal complexes.

Definition_3.4. An integral partial polytopal complex K is a finite disjoint union of open
integral polytopes. The-elements of IC are called the faces of K. The dimension of K is the
largest dimension of the faces of K. The Ehrhart polynomial of I, denoted Lx(g), is the sum
of the Ehrhart polynomials of each face of K.

Then it makes sense to talk about the f*-vector of an integral partial polytopal complex.

Theorem+3.5. For a partial polytopal complex IKC of dimension d, we have the decomposition
of its Ehrhart.polynomial

d
Li(t) = Zfi* (t ; 1>
we eall (fg,..., f;) the f*-vector of K. .

These tools are sufficient for us to introduce the following central theorem due to Breuer.
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Theorem 3.6 (Breuer). An integer-valued polynomial P(g) of degree d is the Ehrhart poly-
nomial of an integral partial polytopal complex if and only if the f*-vector (fs,...,[f])of
P(g) is nonnegative i.e. f7 >0 for all 0 <i <d.

For simplicity, if an integer-valued polynomial P(g) satisfies the condition of the above
theorem, we will call it an Ehrhart polynomial.

3.2. Afandi’s theorem. The main theorem proved by Afandi is the following.

Theorem 3.7 (Afandi [1]). For any fized set d = (di,--- ,dy,) of nonnegative integers with
n > 1. Define

n

C(d) == [J(2d; + 1)1,

m(d) = m = Fl_”gﬂcﬂ .

Then there exists an integral partial polytopal complex. Pq-with dimension |d| and volume

vol (Pq) = 6!41 such that

249T™ (g 4+m)!C(d) / wfl .. w,‘f"wi(ffm)_ﬂn_ld‘ = #{integer lattice points in gPq}

Mg+m,n+1
where gPq is the g dilate of Pq.
Afandi’s theorem can be rephrased as.that Py, ..., (¢ + m), defined in (2), is an Ehrhart
polynomial. The shift m(d) is indispensable in“Afandi’s inductive proof using the DVV
formula. One may naturally ask whether this shift of genus could be dropped in Afandi’s

theorem. The answer is affirmative. This iSswhat.we are going to show in the next section.
Note that we have the string.and dilaton equations for Py, . 4,(g) when d; =0 or 1.

n

Podyodn(9) =Y (2d;4 VP, a,1,..4,(9) + Pay...a, (9);
i

Pia,, La,(9) = (6g+3n —6)Py, . 4,(9)

If we assume d; > 1 for all 1< @ < n, then m(d) > 0. Note that if f(g) is an Ehrhart
polynomial, then so is f(g§+4 1)./ Therefore dropping the shift m(d) is a strengthening of
Afandi’s theorem.

4. IMPROVEMENT OF AFANDI’S THEOREM

For the polynomial Py, ... 4,(g), we will treat the cases n =1 and n > 2 separately.
The following formula of Py(g) was derived from 2-point function due to Dijkgraaf.

Lemma 4.1 (|14, Corollary 4.5]). Let d > 0 be a nonnegative integer. Then
I_d 1J i
4 _1 mo
) 2d+1 ZZ z'2k+1 (d—3z’—k)<k+z’>+( ) 12] )

where the summation range of k is max([4=3+1] 1) < k < d — 3i.
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Theorem 4.2. Let d > 0 be a nonnegative integer. Then Py(g) is an Ehrhart polynomial.

Namely, if we write
d g— 1

i=0
then a; > 0 for all 0 < i < d.
Proof. From Lemma the negative contribution comes from the last term of . Soswe
only need to check that when d = 3m + 1, we have a,, > 0. Note that the contribution to

(9;1) of the first term in the right-hand side of only occurs when i = mrand k = 1, so-we
have

- — 1) = (2m+ 1)(6m#4+ 3)1h> 0.
The statement is proven. O

Theorem 4.3. For any fized set d = (dy,--- ,d,) of nonnegative integers with n > 2, the
polynomial Py, ... 4,(g — 1) is an Ehrhart polynomial. Namely, if we write

|d|

(5) Pay e, (9) =Y Tay 20, (F) <Z>,
k=0

then Iy, ... 4,(k) >0 for all 0 < k < |d|.
From (3)), we have a recursive formula for the coefficients I, ... 4, (k) (see [14, Page 44]).

(6) Iay,.an(k) =D (2dj + Dlay sijedrer,.. dn k)
=2
b k
i(dyy2n—2[d| + 6i — I '
o SN gl + 6 a<9d2dxw .....

i=max(0,k—d1)

+ 12k Z Irsds dn (K —A1) + Z 249 TTHTd ‘ Ioa,(k—4),
r+s=d;—2 r+s=d;—2 el
I1[J={2,- ,n}

where ¢;(d1,m), 0 < t < dy-are the coefficients of

dy T x x

=1

In order to prove Theorem we need some preparations.

Lemma 4.4 ([14, Corollary 4.2]). Let d = (dy,--- ,dy) with d; > 0.

-----

-----

Lemma 4.5. Denote by Idl,...,dn(k‘) the coefficient of ({) in the expansion of Py, ... 4,(g) as

m .

(1)"For d > 0, we have I4(k) > 0 when k > 4]
(2) Forn 2 2, we have Iy, .. 4, (k) = 0 when k < [4F5=2]
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Proof. The assertion of (1) follows from an inspection of the last term of since (9) =
o)+ (D
% i—1/"
The assertion of (2) follows from Lemma O
The proof of Theorem [£.3] consists of three steps.
Step 1. We show that Theorem holds when n = 2, namely 14, 4,(k) > 0.

Step 2. Assume n > 3, by Lemma we may assume k > [Wr#] Then apply the
recursive formula @ to inductively prove that I4,, _q4,(k) > 0.
Step 3. In Step 2, we need the property of c;_;(d1,2n — 2|d| + 6i — 5) > 0. From

k—i N d1
(k-
ch_i(dy,2n — 2|d| + 6i — 5) = Z(—U’H—p( ) Z) [1(6p +2n=2/d] # 6i =5 +2j),
p=0 j=1

denote b =3¢ —3 — (d2 + - - - + dy,) + n, we see that the factor
6p+2n —2|d| +6i —5+2j =6p+3—2(di +1=7)+2b

Hence c—;(d1,2n — 2|d| + 6i — 5) > 0 is equivalent to Theorem [5.1}.which will be proved in
Section [l

5. PROOF OF THE KEY\INEQUALITY
As mentioned, the following inequality was used in the proof of Theorem
Theorem 5.1. Let a,b,d be nonnegative integers satisfying 0 < a <d <3a+b+ 1. Then

a d
(7) Z(—w—p(“) [T+ 34 6p—2j) > 0.

p=0 p j=1

The above inequality has the following two equivalent formulations.

Theorem 5.2. With the same condition as in. Theorem 5.1
d
(8) > S(m, )67 eq_ (204 1,20 —1,...,20+ 1 —2(d — 1)) >0,
n=0
where ey, is thek=th elementary symmetric polynomial in its arguments, and S(n,k) is the
Stirling number of the second kind, which is the number of partitions of {1,...,n} into k
nonempty subsets.

Theorem 5.3. With the same condition as in Theorem|5.1
a 3a—3p

9) Y (1) <;> (6p+2b+ 1) J] (2b+1+6p—2d+25) >0.

p=0 7j=1

Note that for fixed-a and b the left-hand of @ s a polynomial in d of degree 3a.

Theequivalences of the above three inequalities are not difficult to see. For example, the
equivalence of and follow from the closed formula of Stirling numbers

Stna) = LSy (p>p
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5.1. Special cases. We will give a proof of Theorem however, first we will prove two
special cases, which are needed in our inductive proof. In the following two lemmas, we prove
inequality @] (hence inequalities [7| and |8)) for d = 3a + b+ 1 and d = 3a + b.
Lemma 5.4. Let a,b be nonnegative integers and d = 3a + b+ 1, then

a 3a—3p

(10) > (=1 (Z) (6p+2b+ 1)1 J] (2b+ 1+ 6p — 2d + 25) > 0.

p=0 Jj=1
Proof. is equivalent to

a 3a—3p
> (=1 (;) (6p+2b+ 1)1 J] (6p—6a — 1425520

p=0 j=1

> (=1 (Z) (6p+2b+ (=1) - (=3)--- (6p=6a +1)>0

a

D (—1ytetr (Z) (6p + 26+ 1)!!(6a — 6p = )W > 0

p=0
a

> <“> (6p+2b+1)!1(6a~6p — 1)!! > 0

p_

The first step is because the product term' (6p — 6a — 1 4 2j)is negative at j = 3a — 3p, and
thus a negative factor can be extracted fromeall terms.in the product; the factor (—1)3¢=3P
combines with (—1)%"P to ensure nonnegativity. g

Lemma 5.5.

2
|
—

(11) (6a 4 2b+ DI — (Z) (6p -+ 2b + 1)!!(6a — 6p — 3)!! >0

i
o

where a, b are nonnegative integers.

Proof. For n > 0, we have the well-kknown identity

I 2"""1 3
2 W= —7T —).
(s 1)1 = =T+ )
Hence
6 20+ !l = I'(3 b+ -
(6a+2b+1) NG (3a+b+ 2)
23a+b 3 1
(6p+ 20+ 1)!1(6a — 6p — 3)!l = I'Bp+b+ 5)F(3a—3 —5)
And by
/ / i 1 U 1 (x-l—y)dl,dy
we'can rewrite the summation in l 1)) as follows:

a—1

S:=3" <Z) (6p + 2b + )1(6a — 6p — 3)!!

p=0
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a

1 3a+b 3 1
() IF'3p+b+ ) (3a—3p—2)

= Z 5
p=
a— 3a+b
_ < ) 93a+ / / 3p+b+2y3a 3p—3 e~ (a+y) dxdy
—o \P
23a+b o a-l
_ / / T adey <a> P3P dpdy
™ Jo Jo =0 \P

23a+b 00 00 ) 3
— / / Py 2em @) (23 + 43) — 230 didy
™ 0o Jo

The last step follows from the binomial identity (2 + y3)* = ZZ 0 ( ) 3Py 3(a—p),

Since 22 + y3 < (z + y)? holds for nonnegative z,y, we see that
(x?) _|_y3)a . x3a < (JZ _|_y)3a |\ x3a.

Therefore,

23a+b
/ / b+§y Se (a:—l—y)((x + y)3a o 333a)dacdy.

We perform a change of variables: let t =z 4+ 9, u = %, then'the Jacobian of this change
rTy

is t. Then we have
23a+b

00 1
(12) S < / e~ iRkl gt / WL w) "2 (1 — w3 du.
0 0

By the definition of the beta,function and’its. relationship with the gamma function, we
write the inner integral on thewight-hand side of as

1
/ ub+%(1 —u)”
0

s

(- w*) AL B+ 5, —2) - BGa+b+ 5, —7)
oy fBatbt) T(+3)
=2Vl F(Ba+b+1) (b+i))'

Now, we conveft the outer dntegral of Joo et tdt = T'(3a + b + 1); thus, is
equivalent to

[NJI°5

93a+b+1 I'Ba+b+3) T(b+3)
S < T'Ba+b+1)- 20 _ 2
S S TBe b+ D (G T T )
93a+b+1 3 93a+b+1 I'(b+3)
13 « I'Ba+b+>)— I(Ba+b+1)—2
(18) - T (3a+ +2) N (Ba+b+ )F(b+1)
Rearrange
93a+b+1 3 93a+b+1 (b+ §)
FBa+b+=)—8> I'Ba+b+1)——2.
77 TBatbtg) =82 —2—TBa+b+ 5=,

By the relationship between double factorials and the gamma function,

23a+b+1

NS

3
I'Ba+b+ 5) = (6a + 20+ )N



INTERSECTION NUMBERS AND THE COUNTING OF LATTICE POINTS 13

After substitution, our proof is complete.

{9V
S—

3a+b+1 I‘b_|_
T(a+b+1)— 2
77 TBe+ b+ DFa—

> 0 for nonnegative a, b

(6a+2b+ 1)1 — S >

O

Remark 5.6. The inequality (9) at d = 3a+ b is equivalent to (L1)). Substitute 3a + b for d,
so the left-hand side of @ is

a 3a—3p
Z(—l)“‘p<z>(6p+2b+ it I 26+ 1+ 6p — 2d + 24)
p=0 j=1

e |

S (;) (6p+2b+1)-1-(=1)---(2b+ 3% 6p — 2(3a.4b))

p=0
a—1 a
=(6a+20+ 1)1 =" (p) (6p + 2b+ 1)!1(6a.—~6p — 3)!!
p=0

5.2. Proof of Theorem We define forward differences; as they will be used in the proof
of Theorem [E.11

Definition 5.7. "
@@L A8 e+

k=0
is the a-th order forward difference of f. The first order forward difference, or simply, forward
difference, is then

(Af) (@)= (z+ 1) = f(x).

We introduce the well-known Leibnizrule for forward differences evaluated at x = 0:

Lemma 5.8. Let a >0,

M) ()| { = 3 () (A +a=i)- (@T)@)
L= i=0 =
- (§) @@ -9 @0
i=0
Now we are ready to prove Theorem
Proof of Theorem [5.1] is equivalent to the expression
(14) (_1)a.2d.§:(_1)k<z> ﬁ(b—i—i—l—f&k—d—l—r) > 0.

k=0 r=0

Denote
d—1

3
pa(k) = [J 0+ gtk —d+r)
r=0
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Then by the well-known identity

>4 () 70 = (-1)°(a%H(O

k=0
where A®f is the a-th order forward difference of f. We can rewrite as:
(15) 2%(A%g)(0) > 0.
To prove this, proceed by separating pq(k):
d—1
3 3
pa(k) = H(b+§+3k—d+r) =pa1(k) - (b+ 5 + 3k — d +(d= 1))
r=0

We denote gq(k) := (b+ 3 4+ 3k —d + (d — 1)).
Setting u = q4, v = pg_1 and plugging into the identity Lemima we have
= a ; . a—17
(16) Aaana-)(© = 3 (1) (A ) M@ Fi)(0)
i=0
Since q4(k) = 3k+b+ 3 is a linear function, Agq(k) = ga(k+1) — qa(k) = Agq = 3 is constant
and thus A’gy = 0 for i > 1. We define a recursion.function with the only two surviving
summands :
(17) Fy(a) := (A%q)(0) = (A%apa-1)(0) = qala) - Fgs1(a) +3a - Fy_1(a —1)

Now we prove by induction as follows: first, we note that the LHS of equals zero
when d < a; since the LHS of is the LHS.of multiplied by a!, Fy(a) =0 when d < a.
Also, g4(a) and 3a are both nonnegativefor 0 < d.<.3a + b+ 1. Next, we see that the base
cases Fp(0) =1, F1(1) = Ap1(0) = pp(1).— p1(0).= B.are.positive.

Assume F;_1(a) and Fy_1(a—=1) are nonnegative for their corresponding bounds (d—1) <
3a+b+1and (d—1) < 3(a—1)4 b+ 1..We examine Fy(a) with bounds d < 3a+b+1. While
the bound for F;_1(a) is automatically. satisfied, F;_1(a — 1) is not necessarily nonnegative
for d = 3a + b and d = 3a + b +.1; however, we proved those special cases previously.

Thus, by induction, Fy(a) = (A%y4)(@) > 0. The theorem is proved. O

6. EYNARD-ORANTIN TOPOLOGICAL RECURSION

Definition'6.1. We call the following generating function

n

F(ml,...,xn):ZFg(xl,...,xn):Z Z (le---Tdn>ngjj
g=0

9=03"d;=39—3+n j=1
the m~point function.

Consider. the following normalized n-point function

Z?:l 95?

G(z1,...,2n) = exp <_24> F(z1,...,2zp).

Inparticular, we have Zagier’s formula for 3-point function which we learned from Faber.
r1Sy(z,y, 2) A*

G = .

(@9.2)= D 2+ -2 80+ s+ 1)

r,s>0
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where S, (z,y,2) and A are the homogeneous symmetric polynomials defined by
(o) = T @D 2 (g 2+ () (e + )t

= r+y+z
(x+y+2)>3 B 3+ yd 4+ 23
3 3 '

In Step 1 of the proof of Theorem we need to prove that I .(k) > 0 for any b;c > 0.
On the other hand, it is not difficult to get that

3, .3
Ip.o(k) = 24%E1(20 4 1)11(2¢ 4+ D) x [23F7b7eyb,] (exp <y +z ) G(z,vy, z)> 4

€ Zlz,y, 2],

Alz,y,2) = (@ +y)ly+2)(z+ ) =

24

where [23870=¢y?2¢] means taking the corresponding coefficients.

Therefore it suffices to show [2%9°2°|G,(z,y,2) > 0 where G,,(x, 1, 2) is.thé normalized
3-point function as in Zagier’s formula.

We are going to give a proof using the Eynard-Orantin theory 6] which is a-powerful and
unifying tool for enumerative geometry.

Fix n > 0 and a, b,c > 0 with a + b + ¢ = 3n. Define generating,series

= Z Jyu®, G(u) = Z Gru®, J(u) = e%#“G(u),
k>0 k>0
and use the normalization
[299°2°] Jip = (ramyre) (ifa b 4=c=3k; else 0).
From Cauchy product,
(18) ERTENIEE S —M(Z%Jz:j,;%‘, (Ta—3i To—3j Te—3k)»
i,jyk >0

with the convention (7, ---) = 0.if'any-index is negative.

EO moment lemma. Let/A := {(s3453,53) € [0,1]% : 51 + s2 + s3 < 1}. There exists a
finite positive Borel measure fip.qp . on Asuch that, for all 7, j, k > 0,

(19) <7b—3i7b3j7b~3k>‘:t/ﬁstgsézdﬂnuuac(31732733)
A
Proof of the lemma (via Airy. EO in one page). Work on the Airy curve x = %22, y=z
with kernel J ) .
2
K(ZOa Z) = 7(2) ( - ) )
2z \zp+2z 29—z
and EO recursion
Wom1(20, 25) = 5_6)(S)K(Z0,Z) [Wg 1n42(2, —2, 25)+ Z g, 11+1(25 21) Wg2,|J|+1(_ZaZJ):|~
91+g2=9g
S=I0J
The coefficient dictionary is
3
2d, — 1!
Wg’g(zl, 29, 23) = Z <TaTch> H % dZT.
a+b+c=3g r=1 Zr

Apply the inverse Laplace transform variablewise:

1
‘Cz—>L

dL, £t

z—L

( dz ) = ( Lemt! ((z —l—w)_m_1> = %e_wL dL.

z2m+2 2m +1)!
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Fach EO term becomes an integral over parameters with nonnegative polynomial kernels:
(1) Pairing node = parameter s € [0, 1] and Beta kernel

!
B(O"B)(s) = 7((1 +h+1) s (1—s)’, a=1, f=2d+1.
al B!
It replaces the first length by L} = sL; + (1 — s)L;.

(2) Two-leg node = parameters (s,t) with s, > 0, s+t < 1 and triangle-Beta kérnel
(a4 B+~ +2)!
al B!

replacing the first length by L] = (s +¢)L;.
Unroll the recursion into finitely many trees 7' with parameter polytopes Q7 «(products
of [0,1] and {s,t > 0, s+t < 1}). Compose the affine updates to obtain s Qr"— A,
0 — (s1(0),s2(0),s3(0)). Let K7(6) be the product of the corresponding Beta polynomials,

and let CTa’b’c) > 0 be the (finite) sum of multinomial/normalization/splitting constants
selecting the root power L3%L2°L2¢. Define

fnabe = O O3 (mr) 4 (Bn(0) db).
T

Then coefficient extraction shows that each dropla = a — 3 (resp. b — b—3, c — ¢ —3)

C@B) (s,1) = s —s—1), a=2di+1, B = 2dat1yy =1y

multiplies the integrand by s1(0) (resp. s2(0), §3(0)); while/K7 and C'j(fl’b’c) are independent
of (4, j, k) and nonnegative. This yields (19)). O

Conclusion. Insert into and sum the (separate)-exponential series:

(292 Gy = /A (Z %) (Z (_82/24)j> (Z (—33]{:/!24)k> dniade
i>0 Jj=0 k>0

7!
= / 6_(51+82+83)/24 dlunﬂlvb’C.
A

The integrand and measure are nonnegative,-hence [z%y°2¢] G,, > 0.

7. EXAMPLES

Following the method used by Afandi [I], we give some examples of Ehrhart polynomials
Lp(g) and their explicit partial polytopal complexes. We follow the definition of triangula-
tions and/introduce a theorem’involving them as given in [IJ.

Definition 7.1. Let /C be a partial polytopal complex of dimension d. A triangulation
T of K is a disjoint unmion of open simplices whose support is . The triangulation 7
is ‘umimodular if the closure of each open simplex in 7 is lattice equivalent to the stan-
dard simplex. ‘The, f*-vector of T, (f7,...f]), has a special meaning. In particular, f; =
#{i-dimensienal open simplices in T }.

Theorem 7.2." Let IKC be a partial polytopal complex of dimension d and let T be a unimodular

triangulation of KC. Then
d
e =35 (77"
i=0

where (fg,..., f;) is the f*-vector of T.
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The polytopes we give as examples will be inside-out polytopes, they are defined as the
following:

Definition 7.3. An inside-out polytope is any set of the form

P (U)

where P C R? is a full dimensional integral d-polytope, and let H is a hyperplane arrangement,
which is, a finite collection of hyperplanes in R<.

Note that although we will give an example of a polytope that matches its corresponding
integer-valued polynomial perfectly, each polynomial is not exclusively related to one poly-
tope. This will be illustrated through a secondary (and reduced) polytope presented.in each
example; the Ehrhart polynomial of this polytope will differ from that-of the primary example
by a factor.

7.1. Polynomial P; o(g — 1). We show that the integer-valued polynomial

=1
Prog—1) =6g—6=6<g X >
corresponds to the Ehrhart polynomial
Lp, o(9) = |9P1p N Z:
Define P; ¢ as the inside-out polytope [=3;3]\ {£3, £2;£1,0}, shown below.
Pio= o o
-3 —2 =1 0 1 2

P10 has unimodular triangulation 7y :

Tl,OZ o o
53 —28NG51 0 1 2 3

We see that 77 o has f*-vector (0, 6), so by Theorem

Lp, ,(g) = 6<g I 1) =Pio(g—1).

Alternatively, we can consider the reduced inside-out polytope 73;) :=10,1]\ {0, 1} and its
unimodular triangulation 77 p:

Pro— oo
0 1
7/i/oz (6] O
0 1

Since ﬁ has'(fg, f{) = (0,1), by Theorem
g—1
Lm(g) = 1< ) )

Pio(g—1)=6- LPA;O(g) = 6|g7?1;) NZ|.

Hence we have
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7.2. Polynomial P ;(g — 1). Now we show that

36(g — 1)2 — 18(g — 1) = 36¢° — 90g + 54 = 18<g

Pri(g—1)

corresponds to the Ehrhart polynomial

|g7D1,1 N Z2|)

LP1,1 (Q )
where P 1 represents the inside-out polytope ([—3, 3] x [-3,3]) \ H, and H is the hyperplane

arrangement

H:={ze=0,20 = 1,29 = 2,29 = 3,2 = 77,

O,xl = :|:1,$1 = :]:2,.%1 = :t3,

xr1 =

xlil,xg:xliQ,wg:x1i3,x2:$1i4,m2:w1i5}.

To =

)

A visualization of P; 1 is shown below.
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N N N N N
;N 1 \ 1 I N N
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1 N N N N N
PN S N N N 2 __M___ s
4 4 4 N - -
N i) ™ N N N
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i . i Yk X &~ B o
N 1 N N N N
| N\ N AY A N N
N | N | | N
I N A\ N
| I [ N N
I N N N N
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,\\\\7\\\\9\\\I1\l!k4l\!l/’\ll
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N N N N < N
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N N \ N N
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N N N N N
[N N N N A Ay
N (BN ! (BN N \
N | N | | N N
! N N | N N
| N N N N \
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»/
—_ [xp)
_ o
~— _
~—

P1,1 admits the following unimodular triangulation:

—~
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~
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e S B e e
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The f*-vector of the above triangulation is (0, 18,72). Thus, by Theorem

g_
L771,1 (g) = 0( 0

1> + 18<911) +72<g ) 1) = Pri(g—1).

On the other hand, consider the simplified inside-out polytope 731/1 = ([0,1] x [0,2])\ H',

where H' = {zg = 1,290 = 2,21 = 0,22 = z1, 22 = 21 + 1}. Below is a visualization of P ;.

(0,2) 1----» (L,2)
(0,0) " (1,0)
P11 admits the unimodular triangulation with f*-vector (0, 144).
0,2) - (1,2)
(0,0) ¥ (150)

By Theorem Ly—(9) = 0(9;") +1(97") +4(%;") and we have

Pii(g—1) = 18- L5 (g) = 18[gPui N Z°).

7.3. Polynomial P, (g — 1). Finally, we show that\P (g — 1) = 30(;") + 72(%,") corre-

sponds to the Ehrhart polynomial

Lpy, (9) = \gPao 0 Z|,

where Py is the inside-out«polytope ([=3, 3]

rangement

%.[=3,3]) \ Hz2, and Hs is the hyperplane ar-

Ho :={x9 =2,29=3, 29 =x1,21 = 0,21 = £1,21 = £2, 21 = £3,
1’2leil,xg::L‘1:|:2,$2:x1i3,x2:$1ﬂ:4,$2:x1i5}.

Here is a visualization of Psq:
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| ’ 2 71 ‘I ‘I /)
Vi e 7 e
I s I S0 s s |
| 7 s 4
, I I [ [ I |
1, 4 i, > > 1 |
7
v y 4 I v 4 |
| L , , , , ,
L0 L | | al sl
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e e 7 7
(2 l l l l l |
, s 7 7
,
I 1, 1, 1 1, 1, |
r / 1 1 1 1 1
| , s s 7 7 7
I L0 L0 I I |
! s ! ! 1 ’ 1 s 1 ’ |
, ’ ’
r, (I I (I (I (I |
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P20 admits the following unimodular triangulation 7.

20

143,29 = 144, 20 = $1+5}.

(0,1} x [0, 6]) \ H5, where H}, is the
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T5,0.has f*-vector (0,5,12). Thus, by Theorem Ly—(9) = 0(¢
Poolg=1)=6-Lp(9)

Hence;
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8. OBSERVATIONS WHEN PROVING THEOREM [5.1]

When checking Theorem [5.1] computationally, we found that for any a, b values tested, the
left-hand side of , i.e. the expression

a d
(20) S (-1)er <a> [Tc2o+3+6p—25),

p=0 P/ 55
becomes drastically negative when we set d = 3a + b + 2. Below is a table'comparing the

value of the above expression when d = 3a + b + 2 against its value when d =3a + b +1, for
certain a, b.

a b Whend:3a+b—|—1 whend:3a+b+2
1 4 2041200 —2126250

2 3 659874600 —697296600

3 5 6205946712966000 —6310673040672000

4 6

8212934528414231616000 —8290585205214071760000

Since the LHS of (9)),

a 3a—3p
(21) > (=1 <Z> (6p+2b+ 1)1 ] 20+ 1 +6p = 2d+ 25),
p=0 j=1

is a polynomial in d, it is possible to visualize itras a function of d for fixed a,b in a graph.
For instance, below is the graph of the polynomial in d‘when'a = b = 5:

1.2x10%
1.x 1074
8. x 10%
6.x 10*
4.x10%4

2.x 10*

FIGURE 1. when a = b = 5, drawn with Maple

Although it may seem like it, the derivative of the above function is not always positive;
at ‘around-d = 19 to d = 20, the derivative briefly drops below zero. Here is a graph of the
derivative of when a = b = 5.

Remarkably, the minimum value of the first derivative of stays around two orders of
magnitude less than the maximum value, independent of a,b. We denote by [, the length of
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1.6 x 10

1.4 x 10

1.2 x 10

1.x 10**

8.x 107

6.x 10

4.x 104

2.x 104

FIGURE 2. First derivative of when a'= b = 5, drawn-with Maple

the interval where the derivative of (when a="z,b.=%) is'negative. As a,b increase, [,
shrinks. For example, [5 5 is approximately equal to 1.15620317, but when lg ¢ ~ 1.15552147.
As a,b become large, [, seems to exhibit asymptotic behavior: l50 50 ~ 1.1547080, whereas
l100,100 ~ 1.1547024 — a significantly smaller decrease in length than before despite the large
difference in values of a, b.
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